Skip to main content
Log in

Topological solitons

  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

These are notes of the first part of the lectures on topological solitons, presented on Baikal Summer School on Physics of Elementary Particles and Astrophysics (July 2011). I review some of the basic properties of topological solitons on a simple model example of simple one-dimensional kink solution of the nonintegrable scalar ϕ4 model. I discuss both perturbative and non-perturbative sectors of the model, oscillon solution and resonance structures in the soliton collision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. H. R. Skyrme, “A Nonlinear Theory of Strong Interactions,” Proc. Roy. Soc. London A 247, 260 (1958); D. Kinks Finkelstein, J. Math. Phys. 7, 1218 (1966).

    Article  ADS  Google Scholar 

  2. H. B. Nielsen and P. Olesen, “Vortex Line Models for Dual Strings,” Nucl. Phys. B 61, 45 (1973).

    Article  ADS  Google Scholar 

  3. G. ’t Hooft, “Magnetic Monopoles in Unified Gauge Theories,” Nucl. Phys. B 79, 276 (1974).

    Article  ADS  Google Scholar 

  4. A. M. Polyakov, “Particle Spectrum in the Quantum Field Theory,” JETP Lett. 20, 430 (1974).

    Google Scholar 

  5. A. R. Bishop and T. Schneider, Solitons and Condensed Matter Physics (Springer-Verlag, Berlin, 1978).

    Book  MATH  Google Scholar 

  6. N. Manton and P. Sutcliffe, Topological Solitons (Cambridge Univ. Press, Cambridge, UK, 2004).

    Book  MATH  Google Scholar 

  7. Vachaspati, Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons (Cambridge Univ. Press, Cambridge, UK, 2006).

    Book  MATH  Google Scholar 

  8. A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge Univ. Press, Cambridge, UK, 1994).

    MATH  Google Scholar 

  9. Ya. M. Shnir, Magnetic Monopoles (Springer, Berlin, Heidelberg, New York, 2005).

    MATH  Google Scholar 

  10. V. G. Makhankov, “Dynamics Of Classical Solitons In Nonintegrable Systems,” Phys. Rep. 35, 1 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  11. M. Moshir, “Soliton — Anti-Soliton Scattering and Capture λφ4 Theory,” Nucl. Phys. B 185, 318 (1981).

    Article  ADS  Google Scholar 

  12. D. K. Campbell, J. F. Schonfeld, and C. A. Wingate, “Resonance Structure in Kink — Antikink Interactions in φ4 Theory,” Physica D 9, 1 (1983).

    Article  ADS  Google Scholar 

  13. N. S. Manton and H. Merabet, “φ4 Kinks — Gradient Flow and Dynamics,” Nonlinearity 10, 3 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. T. I. Belova and A. E. Kudryavtsev, “Solitons and Their Interactions in Classical Field Theory,” Phys. Usp. 40, 359 (1997).

    Article  ADS  Google Scholar 

  15. V. G. Kiselev and Ya. M. Shnir, “Forced Topological Nontrivial Field Configurations,” Phys. Rev. D 57, 5174 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  16. T. Romanczukiewicz, “Creation of Kink and Antikink Pairs Forced by Radiation,” J. Phys. A 39, 3479 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. P. Anninos, S. Oliveira, and R. A. Matzner, “Fractal Structure in the Scalar λ(φ2 − 1)2 Theory,” Phys. Rev. D 44, 1147 (1991).

    Article  ADS  Google Scholar 

  18. M. B. Voloshin, I. Yu. Kobzarev, and L. B. Okun, “Bubbles in Metastable Vacuum,” Sov. J. Nucl. Phys. 20, 644 (1975).

    Google Scholar 

  19. I. M. Lifshitz and Yu. Kagan, “Quantum Kinetics of Phase Transitions and Its Use to Study the Gas Motion in a Discharge,” Sov. Phys. JETP 35, 206 (1972).

    ADS  Google Scholar 

  20. R. Rajaraman, Solitons and Instantons in Quantum Field Theory (North-Holland, Amsterdam, 1992).

    Google Scholar 

  21. T. Romanczukiewicz and Ya. Shnir, “Oscillon Resonances and Creation of Kinks in Particle Collisions,” Phys. Rev. Lett. 105, 081601 (2010).

    Article  ADS  Google Scholar 

  22. P. Dorey, K. Mersh, T. Romanczukiewicz, and Ya. Shnir, “Kink-Antikink Collisions in the ϕ6 Model,” Phys. Rev. Lett. 107, 091602 (2011).

    Article  ADS  Google Scholar 

  23. R. Dashen, B. Hausslacher, and A. Neveu, Phys. Rev. D 10, 4136 (1975).

    Google Scholar 

  24. I. L. Bogolyubsky and V. G. Makhankov, “On the Pulsed Soliton Lifetime in Two Classical Relativistic Theory Models,” JETP Lett. 24, 12 (1976).

    ADS  Google Scholar 

  25. G. Fodor, P. Forgacs, P. Grandclement, and I. Racz, “Oscillons and Quasi-Breathers in the φ4 Klein-Gordon Model,” Phys. Rev. D 74, 124003 (2006).

    Article  ADS  Google Scholar 

  26. M. Gleiser and D. Sicilia, “A General Theory of Oscillon Dynamics,” arXiv:0910.5922 [hep-th].

  27. E. J. Copeland, M. Gleiser, and H. R. Muller, “Oscillons: Resonant Configurations during Bubble Collapse,” Phys. Rev. D 52 (1920).

  28. M. Hindmarsh and P. Salmi, “Oscillons and Domain Walls,” Phys. Rev. D 77, 105025 (2008).

    Article  ADS  Google Scholar 

  29. M. Gleiser and J. Thorarinson, “A Phase Transition in U(1) Configuration Space: Oscillons as Remnants of Vortex Antivortex Annihilation,” Phys. Rev. D 76, 041701 (2007).

    Article  ADS  Google Scholar 

  30. S. Dutta, D. A. Steer, and T. Vachaspati, “Creating Kinks from Particles,” Phys. Rev. Lett. 101, 121601 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  31. C. S. Carvalho and L. Perivolaropoulos, “Kink-Antikink Formation from an Oscillation Mode by Sudden Distortion of the Evolution Potential,” Phys. Rev. D 79, 065032 (2009).

    Article  ADS  Google Scholar 

  32. T. Sugiyama, “Kink — Antikink Collisions in the Two-Dimensional φ4 Model,” Prog. Theor. Phys. 61, 1550 (1979).

    Article  ADS  Google Scholar 

  33. M. A. Lohe, “Soliton Structures in φ6 Model in Two-Dimensions,” Phys. Rev. D 20, 3120 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. M. Shnir.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shnir, Y.M. Topological solitons. Phys. Part. Nuclei Lett. 9, 745–754 (2012). https://doi.org/10.1134/S1547477112070151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477112070151

Keywords

Navigation