Skip to main content
Log in

On the origin of superselection rules and different solutions of thirring model

  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The normal forms of different one- and two-parametric solutions of Thirring model are connected with each other by making use of generalized conformal shift transformations. A new alternative sources of superselection rules are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. E. Korenblit and V. V. Semenov, “Massless Thirring Model in Canonical Quantization Scheme,” J. Nonlin. Math. Phys. 18, 65 (2011); arXiv:1003.1439 v.2 [hep-th]; S. E. Korenblit and V. V. Semenov, “On Fermionic Tilde Conjugation Rules and Thermal Bosonization. Hot and Cold Thermofields,” Phys. Part. Nucl. Lett. 8, 779 (2011); arXiv:1108.5392 [hep-th]; V. V. Semenov and S. E. Korenblit, “Finite Temperature Thirring Model: From Linearization through Canonical Transformations to Correct Normal Form of Thermofield Solution,” arXiv:1109.2278 [hep-th].

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Klaiber, Lectures in Theoretical Physics, Univ. of Colorado, Boulder, 1967, Ed. by A. Barut and W. Brittin (Gordon and Breach, New York, 1968).

    Google Scholar 

  3. G. F. Dell’Antonio, Y. Frishman, and D. Zwanziger, “Thirring Model in Terms of Currents: Solution and Light-Cone Expansions,” Phys. Rev. D: Part. Fields 6, 988 (1972).

    Article  Google Scholar 

  4. M. Faber and A. N. Ivanov, “On the Equivalence Between Sine-Gordon Model and Thirring Model in the Chirally Broken Phase of the Thirring Model,” Eur. Phys. J. C 20, 723 (2001); M. Faber and A. N. Ivanov, “On Free Massless (Pseudo-) Scalar Quantum Field Theory in (1+1)-Dimensional Space-Time,” Eur. Phys. J. C 24, 653 (2002); T. Fujita, M. Hiramoto, T. Homma, and H. Takahashi, “New Vacuum of Bethe Ansatz Solutions in Thirring Model,” J. Phys. Soc. Jpn. 74, 1143 (2005); T. Fujita, M. Hiramoto, and H. Takahashi, “Re-Interpretation of Spontaneous Symmetry Breaking in Quantum Field Theory and Goldstone Theorem,” hep-th/0510151.

    Article  ADS  MATH  Google Scholar 

  5. S. Mandelstam, “Soliton Operators for the Quantized Sine-Gordon Equation,” Phys. Rev. D 11, 3026 (1975); S. Coleman, “Quantum Sine-Gordon Equation as the Massive Thirring Model,” Phys. Rev. D: Part. Fields 11, 2088 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  6. N. N. Bogoliubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov, General Principles of Quantum Field Theory (Kluwer Academic, Boston, 1990.

    Book  Google Scholar 

  7. A. I. Oksak, “Non-Fock Linear Boson Systems and Their Applications in Two-Dimensional Models,” Teor. Mat. Fiz. 48, 297 (1981).

    Article  MathSciNet  Google Scholar 

  8. G. Morchio, D. Pierotti, and F. Strocchi, “Infrared and Vacuum Structure in Two-Dimensional Local Quantum Field Theory Models. Fermion Bosonization,” J. Math. Phys. 33, 777 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  9. C. Itzykson and J.-B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1980).

    Google Scholar 

  10. V. A. Rubakov, Classical Gauge Fields. Theories with Fermions. Noncommutative Theories (URSS, Moscow, 2005) [in Russian].

    Google Scholar 

  11. S. J. Chang and R. Rajaraman, “Chiral Vertex Operators in Off-Conformal Theory: the Sine-Gordon Example,” Phys. Rev. D 53, 2102 (1996).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Korenblit.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korenblit, S.E., Semenov, V.V. On the origin of superselection rules and different solutions of thirring model. Phys. Part. Nuclei Lett. 9, 780–784 (2012). https://doi.org/10.1134/S1547477112070102

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477112070102

Keywords

Navigation