Skip to main content
Log in

Pion electromagnetic characteristics in the quark model with confinement

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Pion electromagnetic characteristics such as electric polarizability and rms radius were calculated. Pions are considered a nonrelativistic system of two pointlike spinor quarks with a linear potential at large distances and a Coulomb one at short ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Weiner and W. Weise, “Electromagnetic Polarizability of the Nucleon and Chiral Quark Models,” Phys. Lett. B 159, 85–99 (1985).

    Article  ADS  Google Scholar 

  2. N. N. Scoccola and W. Weise, “Nonlinear Meson Theories and Electromagnetic Polarizability of the Nucleon,” Nucl. Phys. A 517, 495–508 (1990).

    Article  ADS  Google Scholar 

  3. J. F. Donoghue and B. R. Holstein, “Pion Transitions and Models of Chiral Symmetry,” Phys. Rev. D: Part. Fields 40, 2378–2409 (1989).

    Article  ADS  Google Scholar 

  4. B. R. Holstein, “Pion Polarizability and Chiral Symmetry,” Comments Nucl. Part. Phys. A 19, 221–238 (1990)

    Google Scholar 

  5. V. N. Pervushin and M. K. Volkov, “Pion Polarizability in Chiral Quantum Field Theory,” Phys. Lett. B 55, 405–408 (1975).

    Article  ADS  Google Scholar 

  6. M. A. Ivanov and T. Mizutani, “Pion and Kaon Polarizabilities in the Quark Confinement Model,” Phys. Rev. D: Part. Fields 45, 1580–1601 (1992).

    Article  ADS  Google Scholar 

  7. M. V. Terent’ev, “Pion Polarizability, Virtual Compton-Effect and π → eνγ Decay,” Sov. J. Nucl. Phys. 16, 87 (1972).

    Google Scholar 

  8. V. A. Petrun’kin, “Electric and Magnetic Polarizability of Hadrons,” Sov. J. Part. Nucl. 12, 278 (1981).

    Google Scholar 

  9. G. Dattoli, G. Matone, and D. Prosperi, “Hadron Polarizabilities and Quark Models,” Lett. Nuovo Cim. 19, 601–614 (1977).

    Article  Google Scholar 

  10. D. Drechsel and A. Russo, “Nucleon Structure Effects in Photon Scattering by Nuclei,” Phys. Lett. B 137, 294–298 (1984).

    Article  ADS  Google Scholar 

  11. F. Schoberl and H. Leeb, “Quark Core Contribution to the Electric Polarizability of Hadrons,” Phys. Lett. B 166, 355–371 (1986).

    Article  ADS  Google Scholar 

  12. M. de Sanctis and D. Prosperi, “Nucleon Polarizabilities in the Constituent Quark Model,” Nuovo Cim. A 103, 1301–1310 (1990).

    Article  ADS  Google Scholar 

  13. H. Liebl and G. R. Goldstein, “Electromagnetic Polarizabilities and Charge Radii of the Nucleons in the Diquark Model,” Phys. Lett. B 343, 363–368 (1995).

    Article  ADS  Google Scholar 

  14. S. M. Kuchin and E. V. Vakulina, “Estimation of Valent Quark Contribution to Electric Polarizability of Mesons in Nonrelativistic Quark Model,” in Proceedings of the 12th International Scientific-Methodical Conference on Actual Problems of Science and Education problemy nauki i obrazovaniya (RIO BGU, Bryansk, 2009), pp. 62–73.

    Google Scholar 

  15. N. V. Maksimenko and S. M. Kuchin, “Static Polarizability of Mesons in a Quark Model,” Izv. Vyssh. Uchebn. Zaved., Fiz. 53(5), 99–101 (2010).

    Google Scholar 

  16. V. V. Andreev and N. V. Maksimenko, “Static Polarizability of Relativistic Two Particle Bound System,” in Proceedings of the International School-Seminar on Actual Problems of Particle Physics, Gomel, Belarus, 2001 (Dubna, 2002), vol. 2, pp. 128–139.

  17. H. Tezuka, “Analytical Solution of the Schrödinger Equation with Linear Confinement Potential,” J. Phys. A: Math. Gen. 24, 5267–5272 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  18. A. F. Krutov and V. E. Troitsky, “Relativistic Instant-Form Approach to the Structure of Two-Body Composite Systems,” Phys. Rev. C 65, 045501 (2002).

    Article  ADS  Google Scholar 

  19. D. E. Groom et al., “Review of Particle Physics,” Eur. Phys. J. C 15, 1–878 (2000).

    Google Scholar 

  20. S. R. Amendolia et al., “A Measurement of the Pion Charge Radius,” Phys. Lett. B 146, 116 (1984).

    Article  ADS  Google Scholar 

  21. A. I. L’vov, “Theoretical Aspects of the Polarizability of the Nucleon,” Int. J. Mod. Phys. A 8, 52–67 (1993).

    Google Scholar 

  22. T. A. Aibergenov et al., “Radiative Photoproduction of Pions and Pion Compton Scattering,” Czech. J. Phys. B 36, 948–951 (1986).

    Article  ADS  Google Scholar 

  23. C. Berger et al., “Pion Pair Production in Photon-Photon Interactions,” Z. Phys. C 26, 199 (1984).

    Article  ADS  Google Scholar 

  24. A. Courau et al., “Lepton and Pion Pair Production in Gamma-Gamma Collisions Measured near the Threshold at DCI,” Nucl. Phys. B 271, 1–20 (1986).

    ADS  Google Scholar 

  25. Z. Ajaltouni et al., “Pion Pair Production in Photon-Photon Collisions at DCI,” Phys. Lett. B 194, 573 (1987).

    Article  ADS  Google Scholar 

  26. J. Boyer et al. (Mark II Collab.), “Two Photon Production of Pion Pairs,” Phys. Rev. D: Part. Fields 42, 1350–1367 (1990).

    Article  ADS  Google Scholar 

  27. J. F. Donoghue and B. R. Holstein, “Photon-Photon Scattering, Pion Polarizability and Chiral Symmetry,” Phys. Rev. D: Part. Fields 48, 137–146 (1993).

    Article  ADS  Google Scholar 

  28. Y. M. Antipov, et al., “Measurement of π-Meson Polarizability in Pion Compton Effect,” Phys. Lett. B 121, 445–448 (1983).

    Article  ADS  Google Scholar 

  29. L. V. Fil’kov and V. L. Kashevarov, “Determination of π0 Meson Quadrupole Polarizabilities from the Process γγ → π0π0,” Phys. Rev. C 73, 035210 (2005).

    Article  ADS  Google Scholar 

  30. J. Gasser, M. A. Ivanov, and M. E. Sainio, “Revisiting γγ →π+πat Low Energies,” Nucl. Phys. B 745, 84–108 (2006).

    Article  ADS  Google Scholar 

  31. V. V. Andreev, Poincare-Covariant Models of Two-Particle Systems with Quantum Field Potentials (Gomel’sk. Gos. Univ. F. Skoriny, Gomel’, 2008) [in Russian].

    Google Scholar 

  32. N. V. Maksimenko and S. G. Shul’ga, “Relativistic ‘Trembling’ Effect of Quarks in Electric Polarizability of Mesons,” Phys. At. Nucl. 56, 826 (1993).

    Google Scholar 

  33. S. P. Klevansky, R. H. Lemmer, and C. A. Wilmot, “The Das-Mathur-Okubo Sum Rule for the Charged Pion Polarizability in a Chiral Model,” Phys. Lett. B 457, 1–8 (1999).

    Article  ADS  Google Scholar 

  34. U. Burgi, “Pion Polarizabilities and Charged Pion Pair Production to Two Loops,” Nucl. Phys. B 479, 392–426 (1996).

    Article  ADS  Google Scholar 

  35. M. V. Terent’ev, “About Structure of Meson Wave Functions as Bound States of Relativistic Quarks,” Sov. J. Nucl. Phys. 24, 106 (1976).

    Google Scholar 

  36. M. J. Lavelle, K. Schilcher, and N. F. Nasrallah, “The Pion Polarizability from QCD Sum Rules,” Phys. Lett. B 335, 211–214 (1994).

    Article  ADS  Google Scholar 

  37. W. Wilcox, “Charged Pion Polarizability from the Lattice,” Nucl. Phys. Proc. Suppl. 53, 302–304 (1997).

    Article  ADS  Google Scholar 

  38. V. Bernard, “Pion Electromagnetic Polarizability and Chiral Models,” Phys. Lett. B 205, 16 (1988).

    Article  ADS  Google Scholar 

  39. A. E. Radzhabov and M. K. Volkov, “Charged Pion Polarizability in the Nonlocal Quark Model of Nambu-Jona-Lasinio Type,” Part. Nucl. Lett 2, 1–3 (2005).

    Google Scholar 

  40. L. V. Fil’kov and V. L. Kashevarov, “Determination of π+-Meson Polarizabilities from the γγ → π + π Process,” Phys. Rev. C 73, 035210 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.M. Kuchin, N.V. Maksimenko, 2012, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2012, No. 3(173), pp. 359–366.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuchin, S.M., Maksimenko, N.V. Pion electromagnetic characteristics in the quark model with confinement. Phys. Part. Nuclei Lett. 9, 216–219 (2012). https://doi.org/10.1134/S1547477112030107

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477112030107

Keywords

Navigation