Skip to main content
Log in

A possible probe of neutrinoless double-beta decay nuclear matrix elements

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Future experiments on the search for the 0νββ decay will be sensitive to the effective Majorana mass in the region of the inverted mass hierarchy. If a positive signal is observed, a possibility to test models of calculation of nuclear matrix elements of the process will appear. We discuss this possibility in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Wendell et al. (Super-Kamiokande Collab.), Phys. Rev. D: Part. Fields 81, 09200 (2010).

    Article  Google Scholar 

  2. B. T. Cleveland et al. (Homestake), Astrophys. J. 496, 505 (1998); J. N. Abdurashitov et al. (SAGE Collab.), Phys. Rev. C 80, 015807 (2009); W. Hampel et al. (GALLEX Collab.), Phys. Lett. B 447, 127 (1999); M. Altmann et al. (GNO Collab.), Phys. Lett. B 616, 174 (2005); P. Cravens et al. (Super-Kamiokande Collab.), Phys. Rev. D 78, 032002 (2008); B. Aharmim et al. (SNO Collab.), Phys. Rev. C 81, 055504 (2010).

    Article  ADS  Google Scholar 

  3. A. Gando et al. (The KamLAND Collab.), Phys. Rev. D: Part. Fields 83, 052002 (2011).

    Article  ADS  Google Scholar 

  4. M. H. Ahn et al. (K2K Collab.), Phys. Rev. D: Part. Fields 74, 072003 (2006).

    Article  ADS  Google Scholar 

  5. A. Habig et al. (MINOS Collab.), Mod. Phys. Lett. A 25, 1219 (2010).

    Article  ADS  Google Scholar 

  6. S. M. Bilenky, J. Hošek, and S. T. Petcov, Phys. Lett. B 94, 495 (1980).

    Article  ADS  Google Scholar 

  7. F. T. Avignone, S. R. Elliott, and J. Engel, Rev. Mod. Phys. 80, 481 (2008).

    Article  ADS  Google Scholar 

  8. S. M. Bilenky, Part. Nucl. 41, 690 (2010).

    Article  Google Scholar 

  9. W. Rodejohann, arXiv:1106.1334 [hep-ph].

  10. M. Doi, T. Kotani, and E. Takasugi, Prog. Theor. Phys. Suppl. 83, 1 (1985).

    Article  ADS  Google Scholar 

  11. B. Pontecorvo, J. Exp. Theor. Phys. 33, 549 (1957); J. Exp. Theor. Phys. 34, 247 (1958).

    Google Scholar 

  12. Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).

    Article  ADS  MATH  Google Scholar 

  13. M. Gell-Mann, P. Ramond, and R. Slansky, Supergravity (North Holland, Amsterdam, 1979), p. 315; T. Yanagida, in Proceedings of the Workshop on Unified Theory and the Baryon Number of the Universe (KEK, Japan, 1979); R. N. Mohaparta and G. Senjanovic —, Phys. Rev. Lett. 44, 912 (1980); P. Minkovski, Phys. Lett. B 67, 421 (1977).

    Google Scholar 

  14. S. M. Bilenky et al., arXiv:1104.1952 [hep-ph].

  15. S. Davidson, E. Nardi, and Y. Nir, Phys. Rep. 466, 105 (2008).

    Article  ADS  Google Scholar 

  16. F. Šimkovic et al., Phys. Rev. C 60, 055502 (1999).

    Article  ADS  Google Scholar 

  17. F. Šimkovic et al., Phys. Rev. C 77, 045503 (2008).

    Article  ADS  Google Scholar 

  18. J. Menéndez et al., Nucl. Phys. A 818, 139 (2009).

    Article  ADS  Google Scholar 

  19. V. A. Rodin et al., Phys. Rev. C 68, 044302 (2003); V. A. Rodin et al., Nucl. Phys. A 766, 107 (2006); Nucl. Phys. A 793, 213(E) (2007).

    Article  ADS  Google Scholar 

  20. Fang Dong-Liang et al., Phys. Rev. C 82, 051301 (2010).

    Article  ADS  Google Scholar 

  21. P. K. Rath et al., Phys. Rev. C 82, 064310 (2010).

    Article  ADS  Google Scholar 

  22. J. Barea and F. Iachello, Phys. Rev. 79, 044301.

  23. T. R. Rodrigez and G. Martinez-Pinedo, Phys. Rev. Lett. 105, 252503 (2010).

    Article  ADS  Google Scholar 

  24. H. V. Klapdor-Kleingrothaus and I. V. Krivosheina, Mod. Phys. Lett. A 21, 1547 (2006).

    Article  ADS  Google Scholar 

  25. J. Jochum (GERDA Collab.), Prog. Part. Nucl. Phys. 64, 261 2010; S. Schönert (GERDA Collab.), J. Phys. Conf. Ser. 203, 012014 (2010).

    Article  ADS  Google Scholar 

  26. L. Baudis et al. (Heidelberg-Moscow Collab.), Phys. Rev. Lett. 83, 41 (1999).

    Article  ADS  Google Scholar 

  27. E. Andreotti et al. (CUORICINO Collab.), Astropart. Phys. 34, 822 (2011).

    Article  ADS  Google Scholar 

  28. R. Arnoldet et al. (NEMO Collab.), Phys. Rev. Lett. 95, 182302 (2005).

    Article  ADS  Google Scholar 

  29. A. S. Barabash, Phys. At. Nucl. 70, 1191 (2007).

    Article  Google Scholar 

  30. J. J. Gomez-Cadenas et al., JCAP 1106, 007 (2011); arXiv:1010.5112 [hep-ex].

    ADS  Google Scholar 

  31. E. Andreotti et al. (CUORE Collab.), Astropart. Phys. 34, 822 (2011); M. Sisti (CUORE Collab.), J. Phys. Conf. Ser. 203, 012069 (2010).

    Article  ADS  Google Scholar 

  32. M. Danilov et al. (EXO Collab.), Phys. Lett. B 480, 12 (2000); R. Gornea (EXO Collab.), J. Phys. Conf. Ser. 259, 012039 (2010).

    Article  ADS  Google Scholar 

  33. M. Koga et al. (KamLAND Collab.), in Proceedings of the International Conference on High Energy Physics ICHEP (Paris, 2010).

  34. F. Granena et al. (NEXT Collab.), arXiv:0907.4054 [hep-ex].

  35. K. Abe et al. (T2K Collab.), Phys. Rev. Lett. 107, 041801 (2011); arXiv:1106.2822v2 [hep-ex].

    Article  ADS  Google Scholar 

  36. T. Schwetz, M. Tórtola, and J. W. F. Valle, New J. Phys. 10, 113011 (2008).

    Article  ADS  Google Scholar 

  37. S. A. Thomas, F. B. Abdalla, and O. Lahav, Phys.e Rev. Lett. 105, 031301 (2010).

    Article  ADS  Google Scholar 

  38. A. Osipowicz et al. (KATRIN Collab.), arXiv:hep-x/0109033; J. Angrik et al. (KATRIN Collab.), KATRIN Design Report (2004); http://bibliothek.fzk.de/zb/berichte/FZKA7090.pdf.

  39. S. Hannestad, Prog. Part. Nucl. Phys. 65, 185 (2010).

    Article  ADS  Google Scholar 

  40. K. N. Abazajian et al., arXiv:1103.5083 [astro-ph].

  41. F. Šimkovic, J. Vergados, and A. Faessler, Phys. Rev. D: Part. Fields 82, 113015 (2010).

    Article  ADS  Google Scholar 

  42. A. Faessler et al., Phys. Rev. D: Part. Fields 83, 113015 (2011).

    Article  ADS  Google Scholar 

  43. A. Faessler et al., Phys. Rev. D: Part. Fields 83, 113003 (2011).

    Article  ADS  Google Scholar 

  44. A. Ibarra, E. Molinaro, and S. T. Petcov, Phys. Rev. D: Part. Fields 84, 013005 (2011).

    Article  ADS  Google Scholar 

  45. G. Senjanovic, arXiv:1012.4104[hep-ph].

  46. A. Faessler et al., Phys. Rev. D: Part. Fields 79, 053001 (2009).

    Article  ADS  Google Scholar 

  47. A. Strumia, in Proceedings of the International Europhysical Conference on High-Energy Physics (Grenoble, France, 2011).

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilenky, S.M., Šimkovic, F. A possible probe of neutrinoless double-beta decay nuclear matrix elements. Phys. Part. Nuclei Lett. 9, 220–227 (2012). https://doi.org/10.1134/S1547477112030041

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477112030041

Keywords

Navigation