Skip to main content
Log in

Cosmological bootstrap

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The extremely large value of the cosmological constant that is characteristic of particle physics and the inflation of the early universe are inherently interconnected. One can construct a superpotential that, after consideration for the leading effects due to supergravity, produces a flat potential of inflaton with a constant density of energy V = Λ4. The introduction of relatively small quantum loop corrections to the parameters of this superpotential naturally leads to a dynamical instability taking the form of an inflationary regime of relaxation of the cosmological constant. This pattern is phenomenologically consistent with observational data at Λ ∼ 1016 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, Rev. Mod. Phys. B 61, 1 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. A. H. Guth, Phys. Rev. D 23, 347 (1981).

    Article  ADS  Google Scholar 

  3. A. D. Linde, Phys. Lett. B 108, 389 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  4. A. Albrecht and P. J. Steinhard, Phys. Rev. Lett. 48, 1220 (1982).

    Article  ADS  Google Scholar 

  5. A. D. Linde, Phys. Lett. B 129, 177 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Linde, Lect. Notes Phys. 738, 1 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  7. J. Dunkley et al. (WMAP Collab.), Astrophys. J. 180(Suppl.), 306 (2009).

    Google Scholar 

  8. E. Komatsu et al. (WMAP Collab.), Astrophys. J. 180(Suppl.), 330 (2009).

    Google Scholar 

  9. E. Komatsu et al. (WMAP Collab.), Astrophys. J. Suppl. 192, 18 (2011).

    Article  ADS  Google Scholar 

  10. W. J. Percival et al., Mon. Not. R. Astron. Soc. 381, 1053 (2007).

    Article  ADS  Google Scholar 

  11. A. G. Riess et al. (Supernova Search Team Collab.), Astrophys. J. 607, 665 (2004).

    Article  ADS  Google Scholar 

  12. A. G. Riess et al., Astrophys. J. 659, 98 (2007).

    Article  ADS  Google Scholar 

  13. P. Astier et al. (The SNLS Collab.), Astron. Astrophys. 447, 31 (2006).

    Article  ADS  Google Scholar 

  14. W. M. Wood-Vasey et al. (ESSENCE Collab.), Astrophys. J 666, 694 (2007).

    Article  ADS  Google Scholar 

  15. I. L. Shapiro and J. Sola, Phys. Lett. B 475, 236 (2000).

    Article  ADS  Google Scholar 

  16. I. L. Shapiro and J. Sola, J. High Energy Phys. 0202, 006 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  17. B. Guberina, R. Horvat, and H. Stefancic, Phys. Rev. D 67, 083001 (2003).

    Article  ADS  Google Scholar 

  18. I. L. Shapiro, J. Sola, and H. Stefancic, JCAP 0501, 012 (2005); hep-ph/0410095.

    ADS  Google Scholar 

  19. N. Bilic et al., Phys. Lett. B 657, 232 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  20. J. Sola, “Dark Energy: A Quantum Fossil From the Inflationary Universe?” hep-th/0710.4151.

  21. I. L. Shapiro and J. Sola, J. Phys. A 40, 6583 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. I. L. Shapiro and J. Sola, “On the Possible Running of the Cosmological ‘Constant’,” hep-th/0910.4925.

  23. F. Bauer, J. Sola, and H. Stefancic, Phys. Lett. B 678, 427 (2009).

    Article  ADS  Google Scholar 

  24. S. Weinberg, “Critical Phenomena for Field Theorists,” in Understanding the Fundamental Constituents of Matter, Ed. by A. Zichichi (Plenum Press, New York, 1977).

    Google Scholar 

  25. S. Weinberg, “Asymptotically Safe Inflation,” hep-th/0911.3165.

  26. G. Chalmers, Class. Quant. Grav. 19, L193 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. M. McGuigan, “Cosmological Constant Seesaw in Quantum Cosmology,” hep-th/0602112; “Cosmological Constant Seesaw in String/M-Theory,” hep-th/0604108.

  28. V. V. Kiselev and S. A. Timofeev, Phys. Rev. D 77, 063518 (2008).

    Article  ADS  Google Scholar 

  29. V. V. Kiselev and S. A. Timofeev, “Natural Scale of Cosmological Constant in Seesaw Mechanism with Broken SUSY,” hep-th/0710.1685.

  30. V. V. Kiselev and S. A. Timofeev, “Properties of Potential Modelling Three Benchmarks: The Cosmological Constant, Inflation and Three Generations,” hep-ph/1004.4112.

  31. K. Enqvist, S. Hannestad, and M. S. Sloth, Phys. Rev. Lett. 99, 031301 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  32. T. Banks, “Cosmological Breaking of Supersymmetry or Little Lambda goes Back to the Future. II,” hep-th/0007146.

  33. T. Banks, “Heretics of the False Vacuum: Gravitational Effects on and of Vacuum Decay. II,” hep-th/0211160.

  34. A. Mazumdar and J. Rocher, “Particle Physics Models of Inflation and Curvaton Scenarios,” hep-ph/1001.0993.

  35. R. Allahverdi et al., Phys. Rev. Lett. 97, 191304 (2006).

    Article  ADS  Google Scholar 

  36. R. Allahverdi, A. Kusenko, and A. Mazumdar, JCAP 0707, 018 (2007).

    ADS  Google Scholar 

  37. R. Allahverdi et al., JCAP 0706, 019 (2007).

    ADS  Google Scholar 

  38. A. O. Barvinsky and A. Y. Kamenshchik, Phys. Lett. B 332, 270 (1994).

    Article  ADS  Google Scholar 

  39. F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659, 703 (2008).

    ADS  Google Scholar 

  40. A. De Simone, M. P. Hertzberg, and F. Wilczek, “Running Inflation in the Standard Model,” hep-ph/0812.4946.

  41. A. O. Barvinsky et al., “Asymptotic Freedom in Inflationary Cosmology with a Non-Minimally Coupled Higgs Field,” hep-ph/0904.1698.

  42. F. Bezrukov and M. Shaposhnikov, “Standard Model Higgs Boson Mass from Inflation: Two Loop Analysis,” hep-ph/0904.1537.

  43. C. P. Burgess, H. M. Lee, and M. Trott, “Power-counting and the Validity of the Classical Approximation During Inflation,” hep-ph/0902.4465.

  44. J. L. F. Barbon and J. R. Espinosa, “On the Naturalness of Higgs Inflation,” hep-ph/0903.0355.

  45. J. L. Cervantes-Cota and H. Dehnen, Nucl. Phys. B 442, 391 (1995).

    Article  ADS  Google Scholar 

  46. J. L. Cervantes-Cota and H. Dehnen, Phys. Rev. D 51, 395 (1996).

    Article  ADS  Google Scholar 

  47. A. O. Barvinsky et al., “Higgs Boson, Renormalization Group, and Cosmology,” hep-ph/0910.1041.

  48. V. V. Kiselev and S. A. Timofeev, “Decoupling of Higgs Boson from the Inflationary Stage of Universe Evolution,” gr-qc/0906.4191.

  49. V. V. Kiselev and S. A. Timofeev, Phys. At. Nucl. 74, 778 (2011).

    Article  Google Scholar 

  50. V. V. Kiselev and S. A. Timofeev, “Cosmological Constraint on the Mass of Higgs Boson in the Standard Model,” in Proceedings of the ICHEP2010 (Paris, 2010), p. 454.

  51. A. B. Arbuzov et al., “Higgs Particle Mass in Cosmology,” hep-ph/0705.4672.

  52. M. Kawasaki, M. Yamaguchi, and T. Yanagida, Phys. Rev. Lett. 85, 3572 (2000).

    Article  ADS  Google Scholar 

  53. S. Kachru et al., Phys. Rev. D 68, 046005 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  54. S. Weinberg, The Quantum Theory of Fields, Vol. 3: Supersymmetry (Cambridge Univ. Press, Cambridge, 2000).

    Google Scholar 

  55. V. Pervushin and D. Proskurin, Grav. Cosmol. Suppl. 8N1, 161 (2002).

    MathSciNet  Google Scholar 

  56. V. V. Kiselev and S. A. Timofeev, Gen. Rel. Grav. 42, 183 (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. L. A. Urena-Lopez and M. J. Reyes-Ibarra, Int. J. Mod. Phys. D 18, 621 (2009).

    Article  ADS  MATH  Google Scholar 

  58. V. V. Kiselev and S. A. Timofeev, “Quasi-Attractor Dynamics of λϕ4-Inflation,” gr-qc/0801.2453.

  59. A. A. Andrianov et al., Phys. Lett. B 651, 306 (2007).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kiselev.

Additional information

Original Russian Text © V.V. Kiselev, S.A. Timofeev, 2012, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2012, No. 2 (172), pp. 179–209.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiselev, V.V., Timofeev, S.A. Cosmological bootstrap. Phys. Part. Nuclei Lett. 9, 111–128 (2012). https://doi.org/10.1134/S1547477112020100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477112020100

Keywords

Navigation