Skip to main content
Log in

Field theoretic treatment of gravitational interaction in electrodynamics

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

A theory of gravitational interaction in classical electrodynamics is developed on the basis of an earlier-proposed minimal relativistic model of gravitation. From the variation principle, a system of gaugeinvariant equations of the interacting electromagnetic and gravitational fields is deduced and their common energy-momentum tensor is constructed. A rigorous solution to the problem of regularizing the field mass of a point charge is given with consideration for the coupling energy of the gravitational interaction. The propagation of electromagnetic waves in the gravitational field is discussed. It is shown that, under the condition of the existing resonant ratio 2: 3 for the periods of Mercury’s orbital revolution and daily rotation, tidal forces cause a regular shift in the planet’s perihelion in an observable forward direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Bogolyubov and D. V. Shirkov, Introduction into the Theory of Quantized Fields (Nauka, Moscow, 1957), p. 23 [in Russian].

    Google Scholar 

  2. H. Möller, in New Gravitation Problems, Collection of Sci. Works (Inostr. Liter., Moscow, 1961), pp. 65–84 [in Russian].

    Google Scholar 

  3. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).

    Google Scholar 

  4. N. V. Mitzkevich, Physical Fields in General Theory of Relativity (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  5. S. N. Sokolov, Gravitatsiya 1(1), 3–12 (1995).

    Google Scholar 

  6. A. N. Serdyukov, Gauge Theory of Scalar Gravitation Field (Gomel. Gos. Univ., Gomel’, 2005) [in Russian].

    Google Scholar 

  7. A. N. Serdyukov, Pis’ma Fiz. Elem. Chastits At. Yadra 6, 312–331 (2009).

    Google Scholar 

  8. A. Einshtein, Collection of Sci. Workds, in 4 vols. (Nauka, Moscow, 1965), Vol. 1, pp. 65–114 [in Russian].

    Google Scholar 

  9. V. A. Fok, The Theory of Space, Time and Gravitation (Fizmatgiz, Moscow, 1961; Pergamon, Oxford, 1964).

    Google Scholar 

  10. H. Reissner, Ann. Phys. (N.Y.) 50, 106 (1916).

    ADS  Google Scholar 

  11. G. Nordström, Proc. Netherlands Acad. 20, 1238 (1918).

    Google Scholar 

  12. M. A. Markov, Zh. Eksp. Teor. Fiz. 64, 1105–1109 (1973).

    ADS  Google Scholar 

  13. M. A. Markov, Preprint OIYaI R2-5289 (Dubna, 1970); Selected Works, in 2 vols. (Moscow, 2001), vol. 2, pp. 41–58 [in Russian].

  14. W. Pauli, Theory of Relativity (Pergamon, Oxford, 1958; Nauka, Moscow, 1983).

    MATH  Google Scholar 

  15. L. Brillouin, Relativity Reexamined (Academic, New York, 1970; Mir, Moscow, 1972).

    Google Scholar 

  16. A. A. Logunov, Lectures in Relativity and Gravitation: AModern Look (Nauka, Moscow, 1987; Pergamon, Oxford, 1990).

    Google Scholar 

  17. A. L. Zel’manov and V. G. Agakov, Elements of the General Theory of Relativity (Nauka, Moscow, 1989).

    MATH  Google Scholar 

  18. D. D. Ivanenko and G. A. Sardanashvili, Gravitation (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  19. A. N. Serdyukov, in Proceedings of the Intern. Seminar on Modern Questions of Elementary Particle Physics, Dedicated to Memory of I. L. Solovtsov (Dubna, 2008), pp. 218–227.

  20. F. J. Belinfante, Physica A 6, 887 (1939).

    MATH  MathSciNet  Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Nauka, Moscow, 1982; Pergamon Press, New York, 1988), pp. 12–17.

    Google Scholar 

  22. I. M. Gel’fand, R. A. Minlos, and Z. Ya. Shapiro, Representations of the Rotation and Lorenz Group and Their Applications (MacMillan, New York, 1963; Nauka, Moscow, 1958).

    Google Scholar 

  23. D. Ivanenko and A. Sokolov, Classical Theory of the Field (Gostekhteorizdat, Moscow, 1951) [in Russian].

    Google Scholar 

  24. S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Mir, Moscow, 1985; Wiley, New York, 1983).

    Google Scholar 

  25. G. Nordström, Phys. Zeitschrift 13, 1126–1129 (1912).

    Google Scholar 

  26. S. Shapiro, Astrophysics, Quants and Theory of Relativity (Moscow, 1982), p. 232 [in Russian].

  27. V. S. Avduevskii et al., Teor. Mat. Fiz. 78(1), 3 (1989).

    Google Scholar 

  28. Ch. Misner, K. Thorne, and J. Wheeler, Gravitation, vol. 3 (Freeman, San Francisco, 1973; Mir, Moscow, 1977).

    Google Scholar 

  29. V. G. Turyshev, Usp. Fiz. Nauk 179, 3–34 (2009) [Phys. Usp. 52, 27 (2009)].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.N. Serdyukov, 2011, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2011, No. 2(165), pp. 137–156.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serdyukov, A.N. Field theoretic treatment of gravitational interaction in electrodynamics. Phys. Part. Nuclei Lett. 8, 78–89 (2011). https://doi.org/10.1134/S1547477111020117

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477111020117

Keywords

Navigation