Skip to main content
Log in

A minimal relativistic model of gravitation within standard restrictions of the Classical Theory of Fields

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The minimal relativistic model of gravitation on the basis of the gauge-invariant theory of the linear scalar massless field is suggested. The principle of the multiplicative inclusion of gravitational interaction, the requirements being that the simplicity and invariance of the theory under the allowed (gauge) transformation of potential Ф → Ф′ = Ф + const as the basis of the approach, is used. A system of gauge-invariant gravitational field and matter equations is obtained and an energy-momentum tensor with a positively defined density of the field energy is constructed. The exact solutions to equations for the central static field and for fields of spherically symmetric and plane gravitational waves in the free space and in the material media are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Heaviside, Electromagnetic Theory, Vol. 1 (N.Y., 1971), p. 455.

    Google Scholar 

  2. N. V. Mitskevich, Physical Fields in the General Theory of Relativity (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  3. L. Brillouin, Relativity Reexamined (Academic Press, New-York 1970; Mir, Moscow, 1972).

    Google Scholar 

  4. O. D. Jefimenko, Causality Electromagnetic Induction and Gravitation. A Different Approach to the Theory of Electromagnetic and Gravitational Fields (Electret Sci. Company Star City, West Virginia, 1992).

    Google Scholar 

  5. G. D. Birkhoff, Proc. Nat. Acad. Sci. USA 30(10), 324–334 (1944).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. W. E. Thirring, Ann. Phys. (N.Y.) 16, 96–117 (1961).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. A. A. Logunov and M. A. Mestvirishvili, Relativistic Theory of Gravitation (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  8. S. S. Gershtein, A. A. Logunov, and M. A. Mestvirishvili, Soobshchenie IFVE 2005–25 (Protvino, 2005).

  9. C. Brans and R. H. Dicke, Phys. Rev. 124, 925–935 (1961).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. C. M. Will and K. Nordvedt, Jr., Astrophys. J. 177, 757 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  11. S. N. Sokolov, Gravitatsiya 1(1), 3–12 (1995).

    Google Scholar 

  12. G. Nordström, Phys. Zeitschrift 13, 1126–1129 (1912).

    Google Scholar 

  13. G. Nordström, Ann. Phys. (N.Y.) 40, 856–878 (1913).

    ADS  Google Scholar 

  14. G. Nordström, Ann. Phys. (N.Y.) 42, 533–554 (1915).

    Google Scholar 

  15. D. E. Littltwood, Proc. Cambridge Filosop. Soc. 49, 90–96 (1953).

    Article  Google Scholar 

  16. A. Papapetrou, Z. Phys. 139, 518 (1954).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. O. Bergman, Am. J. Phys 24, 38 (1956).

    Article  ADS  Google Scholar 

  18. C. Page and B. O. J. Tupper, Mon. Not. Roy. Astron. Soc 138, 67–72 (1968).

    ADS  Google Scholar 

  19. A. N. Serdyukov, Calibration Theory of Scalar Gravitation Field (Gomelsk. Gos. Univ., Gomel’, 2005) [in Russian].

    Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Nauka, Moscow, 1982; Pergamon Press, New York, 1988).

    Google Scholar 

  21. M. A. Naimark, Linear Representations of Lorentz Group (Fizmatgiz, Moscow, 1961; Pergamon, Oxford, 1964).

    Google Scholar 

  22. A. Einshtein, Collected Works, in 4 vols. (Moscow, 1965), Vol. 1, pp. 273–298.

    Google Scholar 

  23. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).

    Google Scholar 

  24. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

    Google Scholar 

  25. A. N. Serdyukov, in Proc. of the Intern. Semin. on Modern Questions of Physics of Elementary Particles, in Memory of I. L. Solovtsov (Dubna, 2008), pp. 218–227.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.N. Serdyukov, 2009, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2009, No. 3 (150), pp. 312–331.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serdyukov, A.N. A minimal relativistic model of gravitation within standard restrictions of the Classical Theory of Fields. Phys. Part. Nuclei Lett. 6, 190–201 (2009). https://doi.org/10.1134/S1547477109030029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477109030029

PACS numbers

Navigation