Skip to main content
Log in

FLUKA Monte Carlo simulation code as used for radiation studies in the Alice experiment

  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The main features of the FLUKA Monte Carlo code, which can deal with transport and interaction of electromagnetic and hadronic particles, are summarized. The physical models embedded in FLUKA are described. Application of the code for the radiation background calculations. Especially, the origin and composition of the intense radiation field to be expected in parts of the ALICE detector for the coming multi-TeV LHC collider is described. It is important to evaluate the risk of radiation damage in detectors and electronics equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Particle Data Group, Rev. Part. Phys. Lett. B 592, 1–1109 (2004).

    ADS  Google Scholar 

  2. R. E. Prael, A. Ferrari, R. K. Tripathi, and A. Polanski, in Proc. of 4th Workshop on Simulating Accelerator Radiation Environments SARE4, Sept. 14–16, 1998, Knoxville, Tenn. (1998), pp. 171–181.

  3. A. Capella, U. Sukhatme, C.-I. Tan, and J. Tran Thanh Van, Dual Parton Model Phys. Rep. 236, 225–330 (1994).

    Google Scholar 

  4. A. Ferrari and P. R. Sala, in Proc. of MC93 Int. Conf. on Monte Carlo Simulation in High Energy and Nuclear Physics, Tallahassee, Florida, Feb. 22–26, 1993 (1993).

  5. A. Ferrari, P. R. Sala, J. Ranft, and S. Roesler, Z. Phys. C 71, 75–86 (1996).

    Article  ADS  Google Scholar 

  6. H. A. Bethe, Ann. Physik 5, 325–324 (1930); Selected Works of Hans A. Bethe (World Scientific, Singapore, 1996).

    Article  ADS  Google Scholar 

  7. J. F. Ziegler and H. H. Andersen, Hydrogen Stopping Powers and Ranges in All Elements, Vols. 1–4 (Pergamon, New York, 1977).

    Google Scholar 

  8. R. M. Sternheimer, M. J. Berger, and S. M. Seltzer, At. Data Nucl. Data Tab. 30, 261–271 (1984).

    Article  ADS  Google Scholar 

  9. G. Z. Molière, Z. Naturforsch. 3a, 78–97 (1948).

    ADS  Google Scholar 

  10. F. Bloch, Ann. Phys. 16, 285–320 (1933).

    Article  MATH  Google Scholar 

  11. M. B. Emmett, “The MORSE Monte Carlo Radiation Transport System,” Oak Ridge Nation. Labor. Rep. ORNL-49720 (1975); ORNL-4972/R2 (1982).

  12. S. Roesler, R. Engel and J. Ranft, in Proc. Monte Carlo 2000 Conf., Lisbon, Oct. 23–26, 2000, Ed. by A. Kling, F. Barão, M. Nakagawa, et al. (Springer, Berlin, 2001) pp. 1033–1038.

    Google Scholar 

  13. J. Aichelin, Phys. Rep. 202, 233 (1991).

    Article  ADS  Google Scholar 

  14. ALICE Collaboration, ALICE Phys. Performance Rep., Vol. I, CERN/LHCC/2003-049.

  15. A. Morsch and B. Pastirčák, “Radiation in ALICE Detectors and Electronics Racks,” ALICE-INT-2004-017.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastirčák, B. FLUKA Monte Carlo simulation code as used for radiation studies in the Alice experiment. Phys. Part. Nuclei Lett. 5, 301–304 (2008). https://doi.org/10.1134/S1547477108030357

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477108030357

PACS numbers

Navigation