Skip to main content
Log in

The emergence of network communities by the action of coevolving market agents

  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The agent-based multileader model of the stock price dynamics on the directed evolving complex network is studied by direct simulation. The resulting stationary regime follows from the balance of extremal dynamics, adaptivity of the strategic variables, and reconnection rules. For given parametric combination, the network displays small-world phenomenon with high clustering coefficients and power-law node degree distribution. The fitness exploration by the mechanism of repeated random walk is used to violate dominance of centralized leadership. The simulation suggests that ultra slow dynamics of fitness implies explanation of the long-time volatility of the log-price returns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Cont and J. P. Bouchaud, Macroecon. Dynam. 4, 170 (2000); D. Chowdhury and D. Stauffer, European Phys. J. B 8, 477 (1999); L. R. da Silva and D. Stauffer, Physica A 294, 235 (2001).

    Article  MATH  Google Scholar 

  2. A. Ponzi and Y. Aizawa, Physica A 287, 507 (2000); S. Bornholdt, Int. J. Mod. Phys. C 12, 667 (2001); T. Kaizoji, S. Bornholdt, and Y. Fujiwara, Physica A 316, 441 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  3. T. Takaishi, Int. J. Mod. Phys. C 16, 1311 (2005).

    Article  ADS  Google Scholar 

  4. D. Challet and M. Marsili, Phys. Rev. E 60, R6271 (1999).

    Article  ADS  Google Scholar 

  5. A. Greco, L. Sorriso-Valvo, and V. Carbone, physics/0601047 (2006).

  6. A. Ilachinski and P. Halpern, Complex Syst. 1, 503 (1987).

    MathSciNet  MATH  Google Scholar 

  7. G. Gigerenzer and R. Selten, Bounded Rationality (MIT, Cambridge, 2002).

    Google Scholar 

  8. H. Zhu, X. Wang, and J. Y. Zhu, Phys. Rev. E 68, 056121 (2003).

  9. R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).

    Article  ADS  Google Scholar 

  10. D. Horváth, Z. Kuscsik, and M. Gmitra, Physica A 369, 780 (2006).

    Article  ADS  Google Scholar 

  11. A. J. Bray and G. J. Rodgers, Phys. Rev. B 38, 11461 (1988); E. Almaas, R. V. Kulkarni, and D. Stroud, Phys. Rev. E 68, 056105 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  12. P. Bak and K. Sneppen, Phys. Rev. Lett. 71, 4083 (1993).

    Article  ADS  Google Scholar 

  13. R. N. Mantegna and E.H. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance (Cambridge Univ., Cambridge, 1999).

    Google Scholar 

  14. R. V. Solé and S. C. Manrubia, Phys. Rev. E 54, R42–R45 (1996).

    Article  ADS  Google Scholar 

  15. D. Sornette, Why Stock Markets Crash: Critical Events in Complex Financial Systems (Princeton Univ., 2003); cond-mat/0301543.

  16. S. N. Dorogovtsev and J. F. F. Mendez, cond-mat/0404593.

  17. H. Ebel, J. Davidsen, and S. Bornholdt, Complexity 8, 24 (2003).

    Article  MathSciNet  Google Scholar 

  18. F. Lillo, S. Mike, and J. D. Farmer, Phys. Rev. E 7106(6 pt 2), 287 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horváth, D., Kuscsik, Z. The emergence of network communities by the action of coevolving market agents. Phys. Part. Nuclei Lett. 5, 211–214 (2008). https://doi.org/10.1134/S1547477108030151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477108030151

PACS numbers

Navigation