Skip to main content
Log in

Thermal spike model of track formation in YBa2Cu3O7−x

  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We consider a model based on the thermal spike concept for an explanation of latent track formation in YBa2Cu3O7−x single crystal. The model demonstrates some interesting peculiarities such as “electronic quenching” and the existence of bifurcation points. Arguments for why the energy spent on damage creation in the track should be equal to the melting heat and why the so-called “epitaxial regrowth” is impossible are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Konczykowski et al., Phys. Rev. B 44, 7167 (1991).

    Article  ADS  Google Scholar 

  2. V. Hardy et al., Nucl. Instrum. Methods Phys. Res. B 54, 472 (1991).

    Article  ADS  Google Scholar 

  3. L. Civale et al., Phys. Rev. Lett. 67, 648 (1991).

    Article  ADS  Google Scholar 

  4. I. M. Lifshits, M. I. Kaganov, and L. V. Tanatarov, J. Nucl. Energy, Part A 12, 69 (1960).

    Google Scholar 

  5. R. L. Fleischer, P. B. Price, and R. M. Walker, Nuclear Tracks in Solids: Principles and Applications (Univ. California Press, Berkeley, Calif., 1979; Energoizdat, Moscow, 1981).

    Google Scholar 

  6. E. Dartyge, Phys. Rev. B 32, 5429 (1985).

    Article  ADS  Google Scholar 

  7. K. Tanimura and N. Itoh, Phys. Rev. B 46, 14362 (1992).

    ADS  Google Scholar 

  8. Zhu Yimei et al., Phys. Rev. B 48, 6436 (1993).

    Google Scholar 

  9. Zhu Yimei, Z. X. Cai, and D. O. Welch, Philos. Mag. A 73, 1 (1996).

    Google Scholar 

  10. G. Szenes, Phys. Rev. B 54, 12458 (1996).

    Google Scholar 

  11. I. N. Goncharov, B. F. Kostenko, and V. P. Philinova, Phys. Lett. A 288, 111 (2001).

    Article  ADS  Google Scholar 

  12. M. Toulemonde, C. Dufour, and E. Paumier, Phys. Rev. B 46, 14362 (1992).

    Article  ADS  Google Scholar 

  13. L. T. Chadderton and I. M. Torrens, Fission Damage in Crystals (Methuen, London, 1969).

    Google Scholar 

  14. A. Meftah et al., Phys. Rev. B 49, 12457 (1994).

  15. S. D. Brorson et al., Solid State Commun. 74, 1305 (1990).

    Article  Google Scholar 

  16. I. I. Vengrus et al., Piss’ma Zh. Eksp. Teor. Fiz. 62, 739 (1995) [JETP Lett. 62, 758 (1995)].

    Google Scholar 

  17. P. Allen et al., Phys. Rev. B 49, 9073 (1994).

    ADS  Google Scholar 

  18. M. P. R. Waligorski, R. N. Hamm, and R. Katz, Nucl. Tracks Radiat. Meas. 1, 309 (1986).

    Google Scholar 

  19. V. S. Barashenkov, Rus. Chem. High Energies 28, 229 (1994).

    Google Scholar 

  20. A. Meftah et al., Phys. Rev. B 48, 920 (1993).

    Article  ADS  Google Scholar 

  21. J. F. Ziegler, SRIM 2003, Version 2003.26, www.srimor.

  22. E. A. Ayrjan, A. V. Fedorov, and B. F. Kostenko, Part. Nucl., Lett. 99(2), 42 (2000).

    Google Scholar 

  23. H. Krakauer, W. E. Pickett, and R. E. Cohen, J. Supercond. 1, 111 (1998).

    ADS  Google Scholar 

  24. M. F. Crommil and A. Zettle, Phys. Rev. B 41, 10978 (1990).

    Google Scholar 

  25. J. L. Cohn et al., Physical Properties of High Temperature Superconductors III, Ed. by D. M. Ginsberg (World Sci., Singapore, 1992).

    Google Scholar 

  26. Yu. V. Martynenko and Yu. N. Yavlinski, Dokl. Akad. Nauk SSSR 268, 88 (1983) [Sov. Phys. Dokl. 28, 391 (1983)]; Preprint IAE-4084/11 (Moscow, 1985).

    Google Scholar 

  27. G. Sciwietz et al., Nucl. Instrum. Methods Phys. Res. B 164–165, 354 (2000).

    Google Scholar 

  28. Lusternik V. E. et al., Rus. Supercond.: Phys., Chem., Eng. 3, 2037 (1990).

    Google Scholar 

  29. H. Teichler, Phys. Rev. B 59, 8473 (1999).

    Article  ADS  Google Scholar 

  30. G. M. Mironova, Mater. Sci. Forum 133–136, 847 (1993).

    Google Scholar 

  31. K. Salama and D. F. Lee, Supercond. Sci. Technol. 7, 177 (1994).

    Article  ADS  Google Scholar 

  32. Y. Idemoto and K. Fueki, Jpn. J. Appl. Phys. 29, 2729 (1990).

    ADS  Google Scholar 

  33. S. Wermbter and L. Tewordt, Physica C 183, 365 (1991).

    Article  ADS  Google Scholar 

  34. S. D. Peaur, J. L. Cohn, and C. Uher, Phys. Rev. B 43, 8721 (1991).

    ADS  Google Scholar 

  35. D. R. Atthey, J. Inst. Maths. Applics. 13, 53 (1974).

    MathSciNet  Google Scholar 

  36. A. M. Meirmanov, The Stefan Problem (Walter de Gruyter, Berlin 1992).

    Google Scholar 

  37. B. F. Kostenko, J. Pribis, and I. V. Puzynin, mathph/0302044; J. Comput. Methods Sci. Eng. (in press).

  38. F. Faupel et al., Rev. Mod. Phys. 75, 237 (2003).

    Article  ADS  Google Scholar 

  39. M. Toulemonde, S. Bouffard, and E. Studer, Nucl. Instrum. Methods Phys. Res. B 91, 108 (1994).

    Article  ADS  Google Scholar 

  40. A. A. Samarskii, Difference Schemes Theory (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  41. B. F. Kostenko and J. Pribish, “Mathematical Modeling of Track Formation in High Temperature Superconductors,” Bull. Peopless’ Friendship Univ. Russ., Ser. Appl. Comput. Math. 4(1), 75 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostenko, B.F., Pribiš, J. & Goncharov, I.N. Thermal spike model of track formation in YBa2Cu3O7−x . Phys. Part. Nuclei Lett. 3, 18–26 (2006). https://doi.org/10.1134/S1547477106010031

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477106010031

Keywords

Navigation