Skip to main content
Log in

The Effects of Social Hierarchy Establishment in Resident-Intruder Model on Testicular Function in Laboratory Mice of Different Inbred Strains

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Male reproductive success is known to be related with ability to social dominance and number and quality of spermatozoa as well as the production of reproductive hormones. The relationships between social dominance and testicular function are affected by genotype and environmental conditions of social hierarchy formation, and male territorial status (resident or intruder). However, the mechanisms of these relationships are still poorly understood. The aim of this study was to investigate effects of genotype and of familiarization with the habitat on testicular function during social hierarchy formation in experimental model of social hierarchy in laboratory mice using resident-intruder paradigm. Male of certain inbred strain (PT or CBA/Lac strain) was placed to experimental cage where male (resident) of other inbred strain (PT or CBA/Lac strain) has been living two days with female of DD/He strain. Social rank for each male was assessed after social hierarchy formation. Then testosterone level in serum and testes and epydidymal sperm quality were estimated after five days after the group formation. It was shown that social hierarchy formation did not affect testosterone level in serum and testes as well as percentage of sperm heads with abnormal morphology. However, the establishment of social hierarchy resulted in decreased sperm number in dominant-intruders of PT strains as well as decreased progressive sperm motility in subordinants of CBA/Lac strain regardless territorial status. To conclude, social hierarchy formation in experimental model of social hierarchy in laboratory mice affects epididymal sperm quality already five days after group formation, with pattern of these relationships depending on genotype, social rank and territorial status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Moreno J (2019) Reproductive Success. Encyclopedia of Animal Behavior, 2nd edition 2: 94–100.

    Article  Google Scholar 

  2. Gromov VS (2008) Spatial and ethological structure of rodent populations. Publishing house KMK, M. (In Russ).

    Google Scholar 

  3. Drews K (1993) The concept and definition of dominance in animal behavior. Behavior 125: 283–313.

    Article  Google Scholar 

  4. Ellis L (1995) Dominance and reproductive success among nonhuman animals: a cross-species comparison. Ethol Sociobiol 164: 257–333.

    Article  Google Scholar 

  5. Bayram HL, Franco C, Brownridge P, Claydon AJ, Koch N, Hurst JL, Beynon RJ, Stockley P (2020) Social status and ejaculate composition in the house mouse. Philosophical Transact Royal Societ London Series B Biol Sci 375: 20200083. https://doi.org/10.1098/rstb.2020.0083.

    Article  CAS  Google Scholar 

  6. Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker H. Behre HM, Haugen TB, Kruger T, Wang C, Mbizvo MT, Vogelsong KM (2010) World Health Organization reference values for human semen characteristics. Hum Reproduct Update 16: 231–245. https://doi.org/10.1093/humupd/dmp048

    Article  Google Scholar 

  7. Stockley P (2004) Sperm competition in mammals. Hum Fertility (Cambridge, England) 7: 91–97. https://doi.org/10.1080/14647270410001699054

  8. Firman RC (2020) Of mice and women: advances in mammalian sperm competition with a focus on the female perspective. Philosophical Transact Royal Societ London Series B Biol 375: 20200082. https://doi.org/10.1098/rstb.2020.0082

    Article  Google Scholar 

  9. Dean MD, Ardlie KG, Nachman MW (2006) The frequency of multiple paternity suggests that sperm competition is common in house mice (Mus domesticus). Mol Ecol 15: 4141–4151. https://doi.org/10.1111/j.1365-294X.2006.03068.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rolland C, Macdonald DW, Fraipont M, Berdoy M (2003) Free female choice in house mice: leaving best for last. Behaviour 140: 1371–1388.

    Article  Google Scholar 

  11. Ramm SA, Schärer L, Ehmcke J, Wistuba J (2014) Sperm competition and the evolution of spermatogenesis. Mol Hum Reproduct 20: 1169–1179. https://doi.org/10.1093/molehr/gau070

    Article  CAS  Google Scholar 

  12. Parker GA (2020) Conceptual developments in sperm competition: a very brief synopsis. Philosophical Transact Royal Societ London Series B Biol 375: 20200061. https://doi.org/10.1098/rstb.2020.0061

    Article  Google Scholar 

  13. Schradin C, Eder S, Müller K (2012). Differential investment into testes and sperm production in alternative male reproductive tactics of the African striped mouse (Rhabdomys pumilio). Horm Behav 61: 686–695. https://doi.org/10.1016/j.yhbeh.2012.03.002.

    Article  PubMed  Google Scholar 

  14. Cornwallis CK, Birkhead TR (2008) Plasticity in reproductive phenotypes reveals status-specific correlations between behavioral, morphological, and physiological sexual traits. Evol Int J Organic Evol 62: 1149–1161. https://doi.org/10.1111/j.1558-5646.2008.00346.x

    Article  Google Scholar 

  15. Rudolfsen G, Figenschou L, Folstad I, Tveiten H, Figenschou M (2006) Rapid adjustments of sperm characteristics in relation to social status. Proceedings Biol Sci 273: 325–332. https://doi.org/10.1098/rspb.2005.3305

    Article  Google Scholar 

  16. Mora A, Meniri M, Gning O, Glauser G, Vallat A, Helfenstein F (2017) Antioxidant allocation modulates sperm quality across changing social environments. PloS One 12: e0176385. https://doi.org/10.1371/journal.pone.0176385

    Article  CAS  Google Scholar 

  17. Koyama S, Kamimura S. (2000) Influence of social dominance and female odor on the sperm activity of male mice. Physiol and Behav 71: 415–422. https://doi.org/10.1016/s0031-9384(00)00361-9.

    Article  CAS  Google Scholar 

  18. Koyama S, Kamimura S (1999) Lowered sperm motility in subordinate social status of mice. Physiol and Behav 65: 665–669. https://doi.org/10.1016/s0031-9384(98)00205-4

    Article  CAS  Google Scholar 

  19. Kleshchev MA, Osadchuk LV (2014) Social domination and reproductive success in male laboratory mice (Mus musculus). J Evol Biochem Phys 50: 227–233 . https://doi.org/10.1134/S0022093014030053

    Article  Google Scholar 

  20. Koyama S (2004) Primer effects by conspecific odors in house mice: a new perspective in the study of primer effects on reproductive activities. Horm Behav 46: 303–310. https://doi.org/10.1016/j.yhbeh.2004.03.002

    Article  PubMed  Google Scholar 

  21. Neff BD, Svensson EI (2013) Polyandry and alternative mating tactics. Philosophical Transact Royal Societ London Series B Biol 368(1613): 20120045. https://doi.org/10.1098/rstb.2012.0045

    Article  Google Scholar 

  22. Kustra MC, Alonzo SH (2020) Sperm and alternative reproductive tactics: a review of existing theory and empirical data. Philosophical Transact Royal Societ London Series B Biol 375: 20200075. https://doi.org/10.1098/rstb.2020.0075

    Article  Google Scholar 

  23. Koolhaas JM, Coppens CM, de Boer SF, Buwalda B, Meerlo P, Timmermans PJ (2013) The resident-intruder paradigm: a standardized test for aggression, violence and social stress. J Visualiz Exp 77: e4367. https://doi.org/10.3791/4367

    Article  Google Scholar 

  24. Hayashi S, Tomihara K (2000) The influence of female on male territorial dominance and female preference in dwelling place in laboratory mice. J Ethology 18: 47–51.

    Article  Google Scholar 

  25. Martinez M, Calvo-Torrent A, Pico-Alfonso M (1998) Social defeat and subordination as models of social stress in laboratory rodents: a review. Aggressiv Behav 24: 241–256. https://doi.org/10.1002/(sici)1098-2337(1998)24:4 < 241::aid-ab1>3.0.co;2-m

    Article  Google Scholar 

  26. Bragin AV, Osadchuk LV, Osadchuk AV (2006) The experimental model of establishment and maintenance of social hierarchy in laboratory mice. Zhurn Vyssh Nervn Deiat im I P Pavlova 56: 412–419.

    CAS  Google Scholar 

  27. Osadchuk LV, Salomacheva IN, Osadchuk AV (2010) Genotype-related changes in the reproductive function under social hierarchy in laboratory male mice. Zhurn Vyssh Nervn Deiat im I P Pavlova 60: 339–351

    CAS  Google Scholar 

  28. Zarubina EA, Osadchuk LV (2011) Phenogenetic analysis of testicular responsiveness to chorionic gonadotropin in inbred mouse strains. Russ J Genet 47: 221–225.

    Article  CAS  Google Scholar 

  29. Kleshchev MA, Osadchuk AV, Osadchuk LV (2022) Peculiarities of agonistic and marking behavior in male laboratory mice (Mus musculus) of different inbred strains during the formation of social hierarchy. Biol Bull 49: 1626–1637.

    Article  Google Scholar 

  30. Kruczek M, Styrna J (2009) Semen quantity and quality correlate with bank vole males’ social status. Behav Proc 82: 279–285. https://doi.org/10.1016/j.beproc.2009.07.009

    Article  Google Scholar 

  31. Tayama K, Fujita H, Takahashi H, Nagasawa A, Yano N, Yuzawa K, Ogata A (2006) Measuring mouse sperm parameters using a particle counter and sperm quality analyzer: a simple and inexpensive method. Reproduct Toxicol 22: 92–101. https://doi.org/10.1016/j.reprotox.2005.11.009.

    Article  CAS  Google Scholar 

  32. Daev EV, Dukel’skaia AV (2003) The female pheromone 2,5-dimethylpyrazine induces sperm head abnormalities in male CBA mice. Russ J Genet 39: 969–974.

    Article  CAS  Google Scholar 

  33. Williamson CM, Lee W, Romeo RD, Curley JP (2017) Social context-dependent relationships between mouse dominance rank and plasma hormone levels. Physiol and Behav 171: 110–119. https://doi.org/10.1016/j.physbeh.2016.12.038.

    Article  CAS  Google Scholar 

  34. Osadchuk LV, Gutorova NV, Kleshchev MA. (2014) Testicular testosterone production in male mice of inbred strains PT and CBA/Lac after a long-term period of stable social hierarchy. Russian Journal of Physiology 100: 465–472.

    CAS  PubMed  Google Scholar 

  35. Wingfield JC, Hegner RE, Dufty AM, Ball GF (1990) The “Challenge Hypothesis”: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am Nat 136: 829–846.

    Article  Google Scholar 

  36. Preston BT, Stevenson IR, Pemberton JM, Wilson K (2001) Dominant rams lose out by sperm depletion. Nature 409: 681–682. https://doi.org/10.1038/35055617

    Article  CAS  PubMed  Google Scholar 

  37. Lemaître JF, Ramm SA, Hurst JL, Stockley P (2012) Sperm competition roles and ejaculate investment in a promiscuous mammal. J Evol Biol 25: 1216–1225. https://doi.org/10.1111/j.1420-9101.2012.02511.x

    Article  PubMed  Google Scholar 

  38. Gutorova NV, Kleshev MA, Osadchuk LV (2012) A role of long-term social interactions in the control of spermatogenesis in male mice of inbred strains pt and CBA/Lac. Russ J Physiol 98: 854—861.

    Google Scholar 

  39. Kleshev MA, Osadchuk LV (2012) Modification of the testicular function in laboratory male mice during social interactions: effect of female presence. Bull Exper Biol Med 153: 240–243. https://doi.org/10.1007/s10517-012-1686-8

    Article  CAS  Google Scholar 

  40. Plant T, Zeleznik A (Eds) (2014) Knobil and Neill’s Physiology of Reproduction Academic Press, 2684 p.

    Google Scholar 

  41. Delbarco-Trillo J, Ferkin MH (2004) Male mammals respond to a risk of sperm competition conveyed by odours of conspecific males. Nature 431: 446–449. https://doi.org/10.1038/nature02845

    Article  CAS  PubMed  Google Scholar 

  42. Parker GA, Pizzari T (2010) Sperm competition and ejaculate economics. Biol reviews Cambridge Philosophical Societ 85: 897–934. https://doi.org/10.1111/j.1469-185X.2010.00140.x

    Article  Google Scholar 

  43. Fernandez CD, Porto EM, Arena AC, Kempinas W (2008) Effects of altered epididymal sperm transit time on sperm quality. Int J Androl 31: 427–437. https://doi.org/10.1111/j.1365-2605.2007.00788.x

    Article  PubMed  Google Scholar 

  44. James ER, Carrell DT, Aston KI, Jenkins TG, Yeste M, Salas-Huetos A (2020) The role of the epididymis and the contribution of epididymosomes to mammalian reproduction. Int J Mol Sci 21: 5377. https://doi.org/10.3390/ijms21155377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marchiani S, Tamburrino L, Muratori M, Baldi E (2017) Epididymal sperm transport and fertilization. In: Simoni M, Huhtaniemi IT (eds). Endocrinology of the testis and male reproduction. SpringerP. 457–478.

    Google Scholar 

  46. Teves ME, Roldan ERS (2022) Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol Rev 102: 7–60. https://doi.org/10.1152/physrev.00009.2020

    Article  CAS  PubMed  Google Scholar 

  47. Daris B, Goropevsek A, Hojnik N, Vlaisavljević V (2010) Sperm morphological abnormalities as indicators of DNA fragmentation and fertilization in ICSI. Archiv Gynecol Obstetrics 281: 363–367. https://doi.org/10.1007/s00404-009-1140-y

    Article  Google Scholar 

  48. Oumaima A, Tesnim A, Zohra H, Amira S, Ines Z, Sana C, Intissar G, Lobna E, Ali J, Meriem M (2018) Investigation on the origin of sperm morphological defects: oxidative attacks, chromatin immaturity, and DNA fragmentation. Environment Sci Pollut RES Internat 25: 13775–13786. https://doi.org/10.1007/s11356-018-1417

    Article  CAS  Google Scholar 

Download references

Funding

The work was performed within the framework of the state task FWNR-2022-0021. “Gene pools of Siberian population, genetic markers of human diseases and molecular bases of pathological processes formation.”

Author information

Authors and Affiliations

Authors

Contributions

Idea of work and planning of the experiment (L.V.O., A.V.O.); collection of experimental data (M.A.K.), analysis of the results (M.A.K., A.V.O.) writing and editing of the article (M.A.K., L.V.O.).

Corresponding author

Correspondence to M. A. Kleshchev.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All applicable international, national and/or institutional principles of animal care and use were observed. All procedures performed in studies involving animals complied with the ethical standards approved by the legal acts of the Russian Federation, the principles of the Basel Declaration, and the recommendations of the Bioethics Committee of ICG SB RAS.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Dyomina

Russian Text © The Author(s), 2023, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2023, Vol. 109, No. 8, pp. 1108–1123https://doi.org/10.31857/S0869813923080046.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleshchev, M.A., Osadchuk, A.V. & Osadchuk, L.V. The Effects of Social Hierarchy Establishment in Resident-Intruder Model on Testicular Function in Laboratory Mice of Different Inbred Strains. J Evol Biochem Phys 59, 1426–1437 (2023). https://doi.org/10.1134/S123456782304033X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S123456782304033X

Keywords:

Navigation