Skip to main content
Log in

H2S-Mediated Dilation of Pial Arteries in Rats of Different Ages: Contribution of KATP and BKCa Channels

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Reactions of pial arteries to exogenous hydrogen sulfide exposure and assessment of the contribution of KATP and BKCa channels to H2S-mediated dilation was studied in rats of different ages. Intravital microphotography in Sprague-Dawley rats aged 4 and 18 months was used to study the reactions of pial arteries of various diameters to the exposure of exogenous hydrogen sulfide donor solution—sodium hydrosulfide (NaHS, 30 µM), as well as their change with the preliminary use of potassium channel blockers: KATP (glibenclamide, 10 µM) and BKCa (tetraethyl ammonium, 2 mM). It was found that inhibition of H2S-mediated dilation of pial arteries and increase in constrictor responses to exogenous hydrogen sulfide exposure are taking place in rats with age. Age-related changes in H2S-induced dilatory response of the pial arteries in rats depend on the size of the vessels. With age, there is a decrease in the number of dilations of pial arteries with a diameter of more than 20 µm. At the same time, aging does not affect the dilatation of smaller arteries. These disorders are probably associated with changes in the processes caused by the activation of potassium channels. It was found that aging is accompanied by the increasing of KATP-channels contribution to the implementation of H2S-mediated dilation in pial arteries with diameters less than 40 µm. BKCa-channels contribution to the dilatation decreases with age. In 18-months-old rats, these channels barely participate in H2S-mediated dilation in arteries with diameters more than 20 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Predmore BL, Alendy MJ, Ahmed KI, Leeuwenburgh C, Julian D (2010) The hydrogen sulfide signaling system: changes during aging and the benefits of caloric restriction. Age (Dordr) 32(4): 467–481. https://doi.org/10.1007/s11357-010-9150-z

  2. Kolluru GK, Shackelford RE, Shen X, Dominic P, Kevil CG (2023) Sulfide regulation of cardiovascular function in health and disease. Nat Rev Cardiol 20(2): 109–125. https://doi.org/10.1038/s41569-022-00741-6

    Article  CAS  PubMed  Google Scholar 

  3. Wilkie SE, Borland G, Carter RN, Morton NM, Selman C (2021) Hydrogen sulfide in ageing, longevity and disease. Biochem J 478(19): 3485–3504. https://doi.org/10.1042/BCJ20210517

    Article  CAS  PubMed  Google Scholar 

  4. Gusakova SV, Smagliy LV, Birulina YG, Kovalev IV, Nosarev AV, Petrov IV, Reutov VP (2017) Molecular mechanisms of action of gas transmitters NO, CO and H2S in smooth muscle cells and effect of NO-generating compounds (nitrates and nitrites) on average life expectancy. Uspekhi Fisiol Nauk 48(1): 24–52. (In Russ).

    CAS  Google Scholar 

  5. Kotsyuba AYE (2011) Distribution of NADPH-diaphorase and enzyme synthesis of hydrogen sulfide in the walls of brain arterias. Vestn novykh med tekhnol 18(2): 255–256. (In Russ).

    Google Scholar 

  6. Dongó E, Kiss L (2020) The potential role of hydrogen sulfide in the regulation of cerebrovascular tone. Biomolecules 10(12): 1685. https://doi.org/10.3390/biom10121685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gheibi S, Jeddi S, Kashfi K, Ghasemi A (2018) Regulation of vascular tone homeostasis by NO and H2S: Implications in hypertension. Biochem Pharmacol 149: 42–59. https://doi.org/10.1016/j.bcp.2018.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Perridon BW, Leuvenink HG, Hillebrands JL, van Goor H, Bos EM (2016) The role of hydrogen sulfide in aging and age-related pathologies. Aging (Albany NY) 8(10): 2264–2289. https://doi.org/10.18632/aging.101026.

  9. Calabrese V, Scuto M, Salinaro AT, Dionisio G, Modafferi S, Ontario ML, Greco V, Sciuto S, Schmitt CP, Calabrese EJ, Peters V (2020) Hydrogen sulfide and carnosine: modulation of oxidative stress and inflammation in kidney and brain axis. Antioxidants (Basel) 9(12): 1303. https://doi.org/10.3390/antiox9121303

  10. Hine C, Zhu Y, Hollenberg AN, Mitchell JR (2018) Dietary and endocrine regulation of endogenous hydrogen sulfide production: implications for longevity. Antioxid Redox Signal 28(16): 1483–1502. https://doi.org/10.1089/ars.2017.7434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu Y-H, Lu M, Hu L-F, Wong PT-H, Webb G, Bian J-S (2012) Hydrogen sulfide in the mammalian cardiovascular system. Antioxid Redox Signal 17(1): 141–185. https://doi.org/10.1089/ars.2011.4005

    Article  CAS  PubMed  Google Scholar 

  12. Yuan S, Shen X, Kevil CG (2017) Beyond a gasotransmitter: hydrogen sulfide and polysulfide in cardiovascular health and immune response. Antioxid Redox Signal 27: 634–653. https://doi.org/10.1089/ars.2017.7096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sindler AL, Delp MD, Reyes R, Wu G, Muller-Delp JM (2009) Effects of ageing and exercise training on eNOS uncoupling in skeletal muscle resistance arterioles. J Physiol 587(15): 3885–3897. https://doi.org/10.1113/jphysiol.2009.172221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Parfenova H, Liu J, Hoover DT, Fedinec AL (2020) Vasodilator effects of sulforaphane in cerebral circulation: A critical role of endogenously produced hydrogen sulfide and arteriolar smooth muscle KATP and BK channels in the brain. J Cereb Blood Flow Metab 40(10): 1987–1996. https://doi.org/10.1177/0271678X19878284

    Article  CAS  PubMed  Google Scholar 

  15. Sun HJ, Wu ZY, Nie XW, Bian JS (2020) Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front Pharmacol 10: 1568. https://doi.org/10.3389/fphar.2019.01568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu XY, Qian LL, Wang RX (2022) Hydrogen sulfide-induced vasodilation: the involvement of vascular potassium channels. Front Pharmacol 13: 911704. https://doi.org/10.3389/fphar.2022.911704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang YZ, Ngowi EE, Wang D, Qi HW, Jing MR, Zhang YX, Cai CB, He QL, Khattak S, Khan NH, Jiang QY, Ji XY, Wu DD (2021) The potential of hydrogen sulfide donors in treating cardiovascular diseases. Int J Mol Sci 22(4): 2194. https://doi.org/10.3390/ijms22042194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Behringer EJ, Hakim MA (2019) Functional interaction among KCa and TRP channels for cardiovascular physiology: Modern perspectives on aging and chronic disease. Int J Mol Sci 20(6): 1380. https://doi.org/10.3390/ijms20061380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hakim MA, Chum PP, Buchholz JN, Behringer EJ (2020) Aging alters cerebrovascular endothelial GPCR and K+ channel function: divergent role of biological sex. J Gerontol A Biol Sci Med Sci 75(11): 2064–2073. https://doi.org/10.1093/gerona/glz275

    Article  CAS  PubMed  Google Scholar 

  20. Tykocki NR, Boerman EM, Jackson WF (2017) Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles. Compr Physiol 7(2): 485–581. https://doi.org/10.1002/cphy.c160011

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gorshkova OP (2022) Age-related changes in the functional activity of ATP-sensitive potassium channels in rat pial arteries. J Evol Biochem Phys 58(2): 345–352. https://doi.org/10.1134/S0022093022020041

    Article  CAS  Google Scholar 

  22. Pourcyrous M, Chilakala S, Elabiad MT, Parfenova H, Leffler CW (2018) Does prolonged severe hypercapnia interfere with normal cerebrovascular function in piglets? Pediatr Res 84(2): 290–295. https://doi.org/10.1038/s41390-018-0061-5

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gheibi S, Jeddi S, Kashfi K, Ghasemi A (2018) Regulation of vascular tone homeostasis by NO and H2S: Implications in hypertension. Biochem Pharmacol 149: 42–59. https://doi.org/10.1016/j.bcp.2018.01.01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koenitzer JR, Isbell TS, Patel HD, Benavides GA, Dickinson DA, Patel RP, Darley-Usmar VM, Lancaster JR Jr, Doeller JE, Kraus DW (2007) Hydrogen sulfide mediates vasoactivity in an O2-dependent manner. Am J Physiol Heart Circ Physiol 292(4): H1953–H1960. https://doi.org/10.1152/ajpheart.01193.2006

    Article  CAS  PubMed  Google Scholar 

  25. Wilson DF, Matschinsky FM (2020) Cerebrovascular Blood Flow Design and Regulation; Vulnerability in Aging Brain. Front Physiol 11: 584891. https://doi.org/10.3389/fphys.2020.584891

    Article  PubMed  PubMed Central  Google Scholar 

  26. Szijártó IA, Markó L, Filipovic MR, Miljkovic JL, Tabeling C, Tsvetkov D, Wang N, Rabelo LA, Witzenrath M, Diedrich A, Tank J, Akahoshi N, Kamata S, Ishii I, Gollasch M (2018) Cystathionine γ-lyase-produced hydrogen sulfide controls endothelial NO bioavailability and blood pressure. Hypertension 71: 1210–1217. https://doi.org/10.1161/HYPERTENSIONAHA.117.10562

    Article  CAS  PubMed  Google Scholar 

  27. Gorshkova OP (2022) Features of mechanisms of NO-mediated dilation of pial arteries to acetylcholine in aging rats. Integrat Fiziol 3(3): 373–383. https://doi.org/10.33910/2687-1270-2022-3-3-367-377

    Article  Google Scholar 

  28. Gorshkova OP (2021) Age-related changes in the role of potassium channels in acetylcholine-induced dilation of pial arteries in normotensive and spontaneously hypertensive rats. J Evol Biochem Phys. 57(1): 55–65. https://doi.org/10.1134/S0022093021010051

    Article  CAS  Google Scholar 

  29. Beleznai TZ, Yarova PL, Yuill KH, Dora KA (2011) Smooth muscle Ca2+-activated and voltage-gated K+ channels modulate conducted dilation in rat isolated small mesenteric arteries. Microcirculation 18: 487–500. https://doi.org/10.1111/j.1549-8719.2011.00109.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Driggers CM, Shyng SL (2023) Mechanistic insights on KATP channel regulation from cryo-EM structures. J Gen Physiol 155(1): e202113046. https://doi.org/10.1085/jgp.202113046

    Article  CAS  PubMed  Google Scholar 

  31. Strickland M, Yacoubi-Loueslati B, Bouhaouala-Zahar B, Pender SLF, Larbi A (2019) Relationships between ion channels, mitochondrial functions and inflammation in human aging. Front Physiol 10: 158. https://doi.org/10.3389/fphys.2019.00158

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tracy EP, Hughes W, Beare JE, Rowe G, Beyer A, LeBlanc AJ (2021) Aging-induced impairment of vascular function: mitochondrial redox contributions and physiological/clinical implications. Antioxid Redox Signal 35(12): 974–1015. https://doi.org/10.1089/ars.2021.0031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pourbagher-Shahri AM, Farkhondeh T, Talebi M, Kopustinskiene DM, Samarghandian S, Bernatoniene J (2021) An overview of NO signaling pathways in aging. Molecules 26(15): 4533. https://doi.org/10.3390/molecules26154533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li Y, Aziz Q, Tinker A (2021) The pharmacology of ATP-sensitive K+ channels (KATP). Handb Exp Pharmacol 267: 357–378. https://doi.org/10.1007/164_2021_466

    Article  CAS  PubMed  Google Scholar 

  35. Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R, Amzel LM, Berkowitz DE, Snyder SH (2011). Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109: 1259–1268. https://doi.org/10.1161/CIRCRESAHA.111.240242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sitdikova GF, Fuchs R, Kainz V, Weiger TM, Hermann A (2014) Phosphorylation of BK channels modulates the sensitivity to hydrogen sulfide (H2S). Front Physiol 2014: 431. https://doi.org/10.3389/fphys.2014.00431

    Article  Google Scholar 

  37. Kirkham DL, Robinson AT, Rossman MJ, Seals DR, Edwards DG (2021) Mitochondrial contributions to vascular endothelial dysfunction, arterial stiffness, and cardiovascular diseases. Am J Physiol Heart Circ Physiol 320(5): H2080–H2100. https://doi.org/10.1152/ajpheart.00917.2020

    Article  CAS  Google Scholar 

  38. Venkatachalam K (2022) Regulation of aging and longevity by ion channels and transporters. Cells 11(7): 1180. https://doi.org/10.3390/cells11071180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wilson C, Lee MD, Buckley C, Zhang X, McCarron JG (2022) Mitochondrial ATP production is required for endothelial cell control of vascular tone. Function (Oxf) 4(2): zqac063. https://doi.org/10.1093/function/zqac063

  40. Busija DW, Katakam PV (2014) Mitochondrial mechanisms in cerebral vascular control: shared signaling pathways with preconditioning. J Vasc Res 51(3): 175–189. https://doi.org/10.1159/000360765

    Article  PubMed  Google Scholar 

  41. Sancho M, Kyle BD (2021) The large-conductance, calcium-activated potassium channel: A big key regulator of cell physiology. Front Physiol 12: 750615. https://doi.org/10.3389/fphys.2021.750615

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The source of funding is the state budget. This work was supported by State Program 47 of the State Program “Scientific and Technological Development of the Russian Federation” (2019–2030), topic 0134-2019-0001.

Author information

Authors and Affiliations

Authors

Contributions

Planning the experiment—O.P.G., collecting and processing data—O.P.G., I.B.S., writing and editing the article—O.P.G., I.B.S..

Corresponding author

Correspondence to O. P. Gorshkova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All procedures performed on animals complied with the ethical standards approved by the legal acts of the Russian Federation, the principles of the Basel Declaration and recommendations of the Commission for the Control over the Keeping and Use of Laboratory Animals at the Pavlov Institute of Physiology of the Russian Academy of Sciences (Minutes no. 12/26 of 12.12.2022). I.P. Pavlov Institute of Physiology of the Russian Academy of Sciences (protocol no. 12/26 of 26.12.2022).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Dyomina

Russian Text © The Author(s), 2023, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2023, Vol. 109, No. 8, pp. 1094–1107https://doi.org/10.31857/S0869813923080034.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkova, O.P., Sokolova, I.B. H2S-Mediated Dilation of Pial Arteries in Rats of Different Ages: Contribution of KATP and BKCa Channels. J Evol Biochem Phys 59, 1414–1425 (2023). https://doi.org/10.1134/S1234567823040328

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1234567823040328

Keywords:

Navigation