Skip to main content
Log in

The cardiac electric field in psychrophilic and thermophilic fish during atrial depolarization

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

In psychrophilic and thermophilic fish, significant differences were revealed under an optimal body temperature in the heart rate, initial atrial activity duration and descending slope of the P II wave. Differences were also detected in atrial electric activity during the initial and final periods of depolarization, reflecting different localization of the initial excitation area and the movement of the depolarization front toward the atrioventricular border.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Golovanov, V.K, Thermal criteria for freshwater fish of the Russian Northwest, Biologicheskie resursy Belogo morya i vnutrennikh vodoemov Evropeiskogo Severa (Biological Resources of the White Sea and Inland Reservoirs of the Russian North), XXVIII Int. Conf., Petrozavodsk, 2009, pp. 148–153.

    Google Scholar 

  2. Stroganov, A.N, The genus Gadus (Gadidae): composition, expansion, morphogeny, Vopr. Ikhtiol., 2015, vol. 55, no. 3, p. 268.

    Google Scholar 

  3. Kuznetsov, V.V., Beloe more i biologicheskie osobennosti ego flory i fauny (The White Sea and Biological Features of its Flora and Fauna), Moscow, Leningrad, 1960.

    Google Scholar 

  4. Kapshai, D.S. and Golovanov, V.K., Thermopreference of carp and perch fry in the Verkhnyaya Volga, Biologicheskie resursy Belogo morya i vnutrennikh vodoemov Evropeiskogo Severa (Biological Resources of the White Sea and Inland Reservoirs of the Russian North), XXVIII Int. Conf., Petrozavodsk, 2009, pp. 262–266.

    Google Scholar 

  5. Beitinger, T.L. and Bennett, W.A, Quantification of the role of acclimation temperature in temperature tolerance of fishes, Environ. Biol. Fishes, 2000, vol. 58, pp. 277–288.

    Article  Google Scholar 

  6. Steele, M., Ermold, W., and Zhang, J, Arctic Ocean surface warming trends over the past 100 years, Geophys. Res. Lett., 2008, vol. 35, p. L02614.

    Article  Google Scholar 

  7. Golovanov, V.K., A diversity of thermal demands in saltwater and freshwater fish, Bioraznoobrazie i rol’ zhivotnykh v ekosistemakh (Biodiversity and the Role of Animals in Ecosystems), VI Int. Sci. Conf., Dnepropetrovsk, 2011, pp. 67–69.

    Google Scholar 

  8. Brodeur, J.C., Dixon, D.G., and McKinly, R.S, Assessment of cardiac output as a predictor of metabolic rate in rainbow trout, J. Fish Biol., 2001, vol. 58, pp. 439–452.

    Article  Google Scholar 

  9. Vornanen, M., Haverinen, J., and Egginton, S, Acute heat tolerance of cardiac excitation in the brown trout (Salmo trutta fario), J. Exp. Biol., 2014, vol. 217, pp. 299–309.

    Article  PubMed  Google Scholar 

  10. Roshchevsky, M.P., Arteeva, N.V., Kolomeets, N.L., Antonova, N.A., Kambalov, M.Yu., Shmakov, D.N., and Roshchevskaya, I.M., A CARDIOINFORM System for visualization and analysis of the cardiac electric field, Med. Akad. Zh., 2005, no. 5, pp. 74–79.

    Google Scholar 

  11. Snelderwaard, P.C., Ginneken, V., Witte, F., Voss, H.P., and Kramer, K, Surgical procedure for implanting a radiotelemetry transmitter to monitor ECG, heart rate and body temperature in small Carassius auratus and Carassius auratus gibelio under laboratory conditions, Lab. Anim., 2006, vol. 40, pp. 465–468.

    Article  CAS  PubMed  Google Scholar 

  12. Axelsson, M., The circulatory system and its control, Fish Physiology, Farrell, A.P. and John, F., Eds., Academic Press, 2005, pp. 239–280.

  13. Sun, P., Zhang, Y., Parks, E., Lyman, A., et al., Micro-electrocardiograms to study post-ventricular amputation of zebrafish heart, Ann. Biomed. Eng., 2009, vol. 37, pp. 890–901.

    Article  PubMed  Google Scholar 

  14. Yu, F., Zhao, Yu, Gu Jie, Quigley, K.L., et al., Flexible microelectrode arrays to interface epicardial electrical signals with intracardial calcium transients in zebrafish hearts, Biomed. Microdevices, 2012, vol. 14, pp. 357–366.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Syme, D.A., Gamperl, A.K., Nash, G.W., and Rodnick, K.J, Increased ventricular stiffness and decreased cardiac function in Atlantic cod (Gadus morhua) at high temperatures, Am. J. Physiol., 2013, vol. 305, pp. R864–R876.

    CAS  Google Scholar 

  16. Tessadori, F., van Weerd, J.H., Burkhard, S.B., Verkerk, A.O., et al., Identification and functional characterization of cardiac pacemaker cells in zebrafish, PloS ONE, 2012, vol. 7, p. e47644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smirnova, S., Roshchevskaya, I., and Roshchevsky, M, Comparison of propagation of atrial excitation with the cardiopotential distribution on the body surface of fish, Electrocardiology, 2014, Proc. 41st Int. Congr. Electrocardiology, Bratislava, 2014, pp. 237–240.

    Google Scholar 

  18. Arbel, E.R., Liberthson, R., Langendorf, R., Pick, A., Lev, M., and Fishman, A.P, Electrophysiological and anatomical observations on the heart of the African lungfish, Am. J. Physiol., 1977, vol. 232, pp. H24–H34.

    CAS  PubMed  Google Scholar 

  19. Kalinin, A.L., Costa, M.J., Rantin, F.T., and Glass, M.L., Effects of temperature on ardiac function in teleost fish, Cardio-Respiratory Control in Vertebrates: Comparative and Evolutionary Aspects, Glass, M.L. and Wood, S.C., Eds., Berlin, Heidelberg, 2009, pp. 121–160.

    Chapter  Google Scholar 

  20. Satchell, G.H., Physiology and Form of Fish Circulation, Cambridge, New York, 1991.

    Book  Google Scholar 

  21. Saito, T, Effects of vagal stimulation on the pacemaker action potentials of carp heart, Comp. Biochem. Physiol. A, Mol. Integr. Physiol., 1973, vol. 44, pp. 191–199.

    Article  CAS  Google Scholar 

  22. Haverinen, J. and Vornanen, M, Temperature acclimation modifies sinoatrial pacemaker mechanism of the rainbow trout heart, Am. J. Physiol., 2007, vol. 292, pp. R1O23–R1O32.

    Google Scholar 

  23. Lukyanov, A.N., Sukhova, G.S., and Udel’-nov, M.G, Localization and structural-functional organization of pacemaker in the heart of the cod Gadus morhua, Zh. Evol. Biokhim. Fiziol., 1983, no. 3, pp. 231–236.

    Google Scholar 

  24. Roshchevsky, M.P., Chudorodova, S.L., and Roshchevskaya, I.M., Body surface reflection of atrial depolarization, Dokl. Akad. Nauk, vol. 412, no. 5, pp. 704–706.

  25. Roshchevsky, M.P., Chudorodova, S.L., Shmakov, D.N., and Roshchevskaya, I.M, Cardiac electric field on the body surface of swine during initial atrial activity, Dokl. Akad. Nauk, 2005, vol. 402, no. 4, pp. 561–562.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Smirnova.

Additional information

Original Russian Text © S.L. Smirnova, I.M. Roshchevskaya, 2017, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2017, Vol. 53, No. 2, pp. 115—119.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, S.L., Roshchevskaya, I.M. The cardiac electric field in psychrophilic and thermophilic fish during atrial depolarization. J Evol Biochem Phys 53, 129–134 (2017). https://doi.org/10.1134/S1234567817020057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1234567817020057

Key words

Navigation