Skip to main content
Log in

Molecular Dynamics Modeling of SiO2 Melts and Glass Formation Processes

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) with ReaxFF potentials is used to study the melting process of quartz and cristobalite together with the amorphous structures obtained at different stages of melting by cooling the melt. The long-term preservation of an excess of eight-membered rings inherited from the crystalline phase is found in the quartz melts, while in the cristobalite melts, the similar preservation of six-membered rings is not observed. Thus, it can be stated that the quartz melts and glasses obtained from them have structural memory, in contrast to cristobalite melts. An increase in the number of four-membered rings with increasing temperature is revealed. A number of other features of the obtained amorphous structures, which we consider as models for glasses, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Zachariasen, W.H., The atomic arrangement in glass, J. Am. Chem. Soc., 1932, vol. 54, no. 10, pp. 3841–3851.

    Article  CAS  Google Scholar 

  2. Warren, B.E., X-ray diffraction of vitreous silica, Z. Kristallogr., 1933, vol. 86, nos. 1–6, pp. 349–358.

    CAS  Google Scholar 

  3. Mashkovtsev, R.I., Nepomnyashchikh, A.I., Zhaboedov, A.P., and Paklin, A.S., EPR study of the E’defects in optical glasses and cristobalite, Europhys. Lett., 2021, vol. 133, no. 1, p. 14003.

    Article  CAS  Google Scholar 

  4. Garmysheva, T.Y., Nepomnyashchikh, A.I., Shalaev, A., Kaneva, E., Paklin, A., Chernenko, K., Kozlova, A.P., Pankratov, V., and Shendrik, R., Luminescence of ODC (II) in quartz and cristobalite glasses, J. Non-Cryst. Solids, 2022, vol. 575, p. 121199.

    Article  CAS  Google Scholar 

  5. Woodcock, L.V., Angell, C.A., and Cheeseman, P., Molecular dynamics studies of the vitreous state: Simple ionic systems and silica, J. Chem. Phys., 1976, vol. 65, no. 4, pp. 1565–1577.

    Article  CAS  Google Scholar 

  6. Feuston, B.P. and Garofalini, S.H., Empirical three-body potential for vitreous silica, J. Chem. Phys., 1988, vol. 89, no. 9, pp. 5818–5824.

    Article  CAS  Google Scholar 

  7. Feuston, B.P., and Garofalini, S.H., Oligomerization in silica sols, J. Phys. Chem., 1990, vol. 94, no. 13, pp. 5351–5356.

    Article  CAS  Google Scholar 

  8. Vessal, B., Amini, M., Fincham, D., and Catlow, C.R.A., Water-like melting behaviour of SiO2 investigated by the molecular dynamics simulation technique, Philos. Mag., 1989, vol. 60, no. 6, pp. 753–775.

    Article  CAS  Google Scholar 

  9. Vashishta, P.P., Kalia, R.K., Rino, J.P., and Ebbsjö, I., Interaction potential for SiO2: A molecular-dynamics study of structural correlations, Phys. Rev. B, 1990, vol. 41, no. 17, p. 12197.

    Article  CAS  Google Scholar 

  10. Van Beest, B.W.H., Kramer, G.J., and Van Santen, R.A., Force fields for silicas and aluminophosphates based on ab initio calculations, Phys. Rev. Lett., 1990, vol. 64, no. 16, p. 1955.

    Article  CAS  Google Scholar 

  11. Afify, N.D., Mountjoy, G., and Haworth, R., Selecting reliable interatomic potentials for classical molecular dynamics simulations of glasses: The case of amorphous SiO2, Comput. Mater. Sci., 2017, vol. 128, pp. 75–80.

    Article  CAS  Google Scholar 

  12. Pedone, A., Malavasi, G., Menziani, M.C., Cormack, A.N., and Segre, U., A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses, J. Phys. Chem. B, 2006, vol. 110, no. 24, pp. 11780–11795.

    Article  CAS  Google Scholar 

  13. Tsuneyuki, S., Tsukada, M., Aoki, H., and Matsui, Y., First-principles interatomic potential of silica applied to molecular dynamics, Phys. Rev. Lett., 1988, vol. 61, no. 7, p. 869.

    Article  CAS  Google Scholar 

  14. Cormack, A.N., Du, J., and Zeitler, T.R., Alkali ion migration mechanisms in silicate glasses probed by molecular dynamics simulations, Phys. Chem. Chem. Phys., 2002, vol. 4, no. 14, pp. 3193–3197.

    Article  CAS  Google Scholar 

  15. Flikkema, E. and Bromley, S.T., A new interatomic potential for nanoscale silica, Chem. Phys. Lett., 2003, vol. 378, nos. 5–6, pp. 622–629.

    Article  CAS  Google Scholar 

  16. Du, J. and Cormack, A.N., The structure of erbium doped sodium silicate glasses, J. Non-Cryst. Solids, 2005, vol. 351, nos. 27–29, pp. 2263–2276.

    Article  CAS  Google Scholar 

  17. Carré, A., Ispas, S., Horbach, J., and Kob, W., Developing empirical potentials from ab initio simulations: The case of amorphous silica, Comput. Mater. Sci., 2016, vol. 124, pp. 323–334.

    Article  Google Scholar 

  18. Carre, A., Horbach, J., Ispas, S., and Kob, W., New fitting scheme to obtain effective potential from car-parrinello molecular-dynamics simulations: Application to silica, Europhys. Lett., 2008, vol. 82, no. 1, p. 17001.

    Article  Google Scholar 

  19. Soules, T.F., Gilmer, G.H., Matthews, M.J., Stolken, J.S., and Feit, M.D., Silica molecular dynamic force fields—A practical assessment, J. Non-Cryst. Solids, 2011, vol. 357, no. 6, pp. 1564–1573.

    Article  CAS  Google Scholar 

  20. Soules, T.F., Computer simulation of glass structures, J. Non-Cryst. Solids, 1990, vol. 123, nos. 1–3, pp. 48–70.

    Article  CAS  Google Scholar 

  21. Takada, A., Richet, P., Catlow, C.R.A., and Price, G.D., Molecular dynamics simulations of vitreous silica structures, J. Non-Cryst. Solids, 2004, vol. 345, pp. 224–229.

    Article  Google Scholar 

  22. Tersoff, J., Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys. Rev. Lett., 1988, vol. 61, no. 25, p. 2879.

    Article  CAS  Google Scholar 

  23. Munetoh, S., Motooka, T., Moriguchi, K., and Shintani, A., Interatomic potential for Si–O systems using Tersoff parameterization, Comput. Mater. Sci., 2007, vol. 39, no. 2, pp. 334–339.

    Article  CAS  Google Scholar 

  24. Tangney, P. and Scandolo, S., An ab initio parametrized interatomic force field for silica, J. Chem. Phys., 2002, vol. 117, no. 19, pp. 8898–8904.

    Article  CAS  Google Scholar 

  25. Garofalini, S.H., Molecular dynamics simulations of silicate glasses and glass surfaces, Rev. Mineral. Geochem., 2001, vol. 42, no. 1, pp. 131–168.

    Article  CAS  Google Scholar 

  26. Pedone, A., Properties calculations of silica-based glasses by atomistic simulations techniques: A review, J. Phys. Chem. C, 2009, vol. 113, no. 49, pp. 20773–20784.

    Article  CAS  Google Scholar 

  27. Von Alfthan, S., Kuronen, A., and Kaski, K., Realistic models of amorphous silica: A comparative study of different potentials, Phys. Rev. B, 2003, vol. 68, no. 7, p. 073203.

    Article  Google Scholar 

  28. Wooten, F., Winer, K., and Weaire, D., Computer generation of structural models of amorphous Si and Ge, Phys. Rev. Lett., 1985, vol. 54, no. 13, p. 1392.

    Article  CAS  Google Scholar 

  29. Van Duin, A.C., Dasgupta, S., Lorant, F., and Goddard, W.A., ReaxFF: A reactive force field for hydrocarbons, J. Phys. Chem. A, 2001, vol. 105, no. 41, pp. 9396–9409.

    Article  CAS  Google Scholar 

  30. Wang, C., Kuzuu, N., and Tamai, Y., Molecular dynamics study on surface structure of a-SiO2 by charge equilibration method, J. Non-Cryst. Solids, 2003, vol. 318, nos. 1–2, pp. 131–141.

    Article  CAS  Google Scholar 

  31. Rappe, A.K. and Goddard, W.A. III, Charge equilibration for molecular dynamics simulations, J. Phys. Chem., 1991, vol. 95, no. 8, pp. 3358–3363.

    Article  CAS  Google Scholar 

  32. Van Duin, A.C., Strachan, A., Stewman, S., Zhang, Q., Xu, X., and Goddard, W.A., ReaxFFSiO reactive force field for silicon and silicon oxide systems, J. Phys. Chem. A, 2003, vol. 107, no. 19, pp. 3803–3811.

    Article  CAS  Google Scholar 

  33. Fogarty, J.C., Aktulga, H.M., Grama, A.Y., Van Duin, A.C., and Pandit, S.A., A reactive molecular dynamics simulation of the silica-water interface, J. Chem. Phys., 2010, vol. 132, no. 17, p. 174704.

    Article  Google Scholar 

  34. Rimsza, J.M., Yeon, J., Van Duin, A.C.T., and Du, J., Water interactions with nanoporous silica: Comparison of ReaxFF and ab initio based molecular dynamics simulations, J. Phys. Chem. C, 2016, vol. 120, no. 43, pp. 24803–24816.

    Article  CAS  Google Scholar 

  35. Yeon, J. and van Duin, A.C.T., ReaxFF molecular dynamics simulations of hydroxylation kinetics for amorphous and nano-silica structure, and its relations with atomic strain energy, J. Phys. Chem. C, 2016, vol. 120, no. 1, pp. 305–317.

    Article  CAS  Google Scholar 

  36. Rimsza, J.M. and Du, J., Interfacial structure and evolution of the water-silica gel system by reactive force-field-based molecular dynamics simulations, J. Phys. Chem. C, 2017, vol. 121, no. 21, pp. 11534–11543.

    Article  CAS  Google Scholar 

  37. Musgraves, J.D., Hu, J., and Calvez, L., Springer Handbook of Glass, Cham: Springer, 2019, p. 326.

    Book  Google Scholar 

  38. Cahn, R.W., Materials science: Melting and the surface, Nature, 1986, vol. 323, no. 6090, pp. 668–669.

    Article  Google Scholar 

  39. Wolf, D. and Yip, S., MRS Bull., 1995, vol. 20, no. 1, p. 63.

    Google Scholar 

  40. Nakano, A., Kalia, R.K., and Vashishta, P., First sharp diffraction peak and intermediate-range order in amorphous silica: Finite-size effects in molecular dynamics simulations, J. Non-Cryst. Solids, 1994, vol. 171, no. 2, pp. 157–163.

    Article  CAS  Google Scholar 

  41. Galeener, F.L., and Mikkelsen, J.C., Jr., Vibrational dynamics in O18-substituted vitreous SiO2, Phys. Rev. B, 1981, vol. 23, no. 10, p. 5527.

    Article  CAS  Google Scholar 

  42. Bin, L., Jing-Yang, W., Yan-Chun, Z., and Fang-Zhi, L., Temperature dependence of elastic properties for amorphous SiO2 by molecular dynamics simulation, Chin. Phys. Lett., 2008, vol. 25, no. 8, p. 2747.

    Article  Google Scholar 

  43. Matsui, M., A transferable interatomic potential model for crystals and melts in the system CaO–MgO–Al2O3–SiO2, Mineral. Mag., 1994, vol. 58, pp. 571–572.

    Article  Google Scholar 

  44. Sarnthein, J., Pasquarello, A., and Car, R., Structural and electronic properties of liquid and amorphous SiO2: An ab initio molecular dynamics study, Phys. Rev. Lett., 1995, vol. 74, no. 23, p. 4682.

    Article  CAS  Google Scholar 

  45. Sarnthein, J., Pasquarello, A., and Car, R., Model of vitreous SiO2 generated by an ab initio molecular-dynamics quench from the melt, Phys. Rev. B, 1995, vol. 52, no. 17, p. 12690.

    Article  CAS  Google Scholar 

  46. Spiekermann, G., Steele-Macinnis, M., Schmidt, C., and Jahn, S., Vibrational mode frequencies of silica species in SiO2–H2O liquids and glasses from ab initio molecular dynamics, J. Chem. Phys., 2012, vol. 136, no. 15, p. 154501.

    Article  Google Scholar 

  47. Spiekermann, G., Steele-MacInnis, M., Kowalski, P.M., Schmidt, C., and Jahn, S., Vibrational properties of silica species in MgO–SiO2 glasses obtained from ab initio molecular dynamics, Chem. Geol., 2013, vol. 346, pp. 22–33.

    Article  CAS  Google Scholar 

  48. Usui, Y. and Tsuchiya, T., Ab initio two-phase molecular dynamics on the melting curve of SiO2, J. Earth Sci., 2010, vol. 21, no. 5, pp. 801–810.

    Article  CAS  Google Scholar 

  49. Benoit, M., Ispas, S., and Tuckerman, M.E., Structural properties of molten silicates from ab initio molecular-dynamics simulations: Comparison between CaO–Al2O3–SiO2 and SiO2, Phys. Rev. B, 2001, vol. 64, no. 22, p. 224205.

    Article  Google Scholar 

  50. Litton, D.A. and Garofalini, S.H., Vitreous silica bulk and surface self-diffusion analysis by molecular dynamics, J. Non-Cryst. Solids, 1997, vol. 217, nos. 2–3, pp. 250–263.

    Article  CAS  Google Scholar 

  51. Litton, D.A. and Garofalini, S.H., Modeling of hydrophilic wafer bonding by molecular dynamics simulations, J. Appl. Phys., 2001, vol. 89, no. 11, pp. 6013–6023.

    Article  CAS  Google Scholar 

  52. Soules, T.F., Molecular dynamic calculations of glass structure and diffusion in glass, J. Non-Cryst. Solids, 1982, vol. 49, nos. 1–3, pp. 29–52.

    Article  CAS  Google Scholar 

  53. Kubicki, J.D. and Lasaga, A.C., Molecular dynamics simulations of SiO2 melt and glass; ionic and covalent models, Am. Mineralog., 1988, vol. 73, nos. 9–10, pp. 941–955.

    CAS  Google Scholar 

  54. Della Valle, R.G. and Andersen, H.C., Molecular dynamics simulation of silica liquid and glass, J. Chem. Phys., 1992, vol. 97, no. 4, pp. 2682–2689.

    Article  CAS  Google Scholar 

  55. Horbach, J., Kob, W., and Binder, K., Molecular dynamics simulation of the dynamics of supercooled silica, Philos. Mag. B, 1998, vol. 77, no. 2, pp. 297–303.

    Article  CAS  Google Scholar 

  56. Horbach, J., Kob, W., and Binder, K., The dynamics of supercooled silica: Acoustic modes and boson peak, J. Non-Cryst. Solids, 1998, vol. 235, pp. 320–324.

    Article  Google Scholar 

  57. Horbach, J., Kob, W., and Binder, K., Specific heat of amorphous silica within the harmonic approximation, J. Phys. Chem. B, 1999, vol. 103, no. 20, pp. 4104–4108.

    Article  CAS  Google Scholar 

  58. Horbach, J. and Kob, W., Static and dynamic properties of a viscous silica melt, Phys. Rev. B, 1999, vol. 60, no. 5, p. 3169.

    Article  CAS  Google Scholar 

  59. Binder, K., Horbach, J., Knoth, H., and Pfleiderer, P., Computer simulation of molten silica and related glass forming fluids: Recent progress, J. Phys.: Condens. Matter, 2007, vol. 19, no. 20, p. 205102.

    Google Scholar 

  60. Vollmayr, K., Kob, W., and Binder, K., Cooling-rate effects in amorphous silica: A computer-simulation study, Phys. Rev. B, 1996, vol. 54, no. 22, p. 15808.

    Article  CAS  Google Scholar 

  61. Gotze, W. and Sjogren, L., Relaxation processes in supercooled liquids, Rep. Prog. Phys., 1992, vol. 55, no. 3, p. 241.

    Article  Google Scholar 

  62. García-Colín, L.S., del Castillo, L.F., and Goldstein, P., Theoretical basis for the Vogel–Fulcher–Tammann equation, Phys. Rev. B, 1989, vol. 40, no. 10, p. 7040.

    Article  Google Scholar 

  63. Quenneville, J., Taylor, R.S., and van Duin, A.C.T., Reactive molecular dynamics studies of DMMP adsorption and reactivity on amorphous silica surfaces, J. Phys. Chem. C, 2010, vol. 114, no. 44, pp. 18894–18902.

    Article  CAS  Google Scholar 

  64. Tranh, D.T.N., and van Hoang, V., Molecular dynamics simulation of amorphous SiO2 thin films, Eur. Phys. J. Appl. Phys., 2015, vol. 70, no. 1, p. 10302.

    Article  Google Scholar 

  65. Athanasopoulos, D.C. and Garofalini, S.H., Molecular dynamics simulations of the effect of adsorption on SiO2 surfaces, J. Chem. Phys., 1992, vol. 97, no. 5, pp. 3775–3780.

    Article  CAS  Google Scholar 

  66. Vo, T., He, B., Blum, M., Damone, A., and Newell, P., Molecular scale insight of pore morphology relation with mechanical properties of amorphous silica using ReaxFF, Comput. Mater. Sci., 2020, vol. 183, p. 109881.

    Article  CAS  Google Scholar 

  67. Pakarinen, O.H., Djurabekova, F., Nordlund, K., Kluth, P., and Ridgway, M.C., Molecular dynamics simulations of the structure of latent tracks in quartz and amorphous SiO2, Nucl. Instrum. Methods Phys. Res., Sect. B, 2009, vol. 267, nos. 8–9, pp. 1456–1459.

    CAS  Google Scholar 

  68. Takada, A., Bell, R.G., and Catlow, C.R.A., Molecular dynamics study of liquid silica under high pressure, J. Non-Cryst. Solids, 2016, vol. 451, pp. 124–130.

    Article  CAS  Google Scholar 

  69. Le, V.V. and Nguyen, G.T., Molecular dynamics simulation of structural transformation in SiO2 glass under densification, J. Non-Cryst. Solids, 2019, vol. 505, pp. 225–233.

    Article  CAS  Google Scholar 

  70. Badro, J., Barrat, J.L., and Gillet, P., Numerical simulation of α-quartz under nonhydrostatic compression: Memory glass and five-coordinated crystalline phases, Phys. Rev. Lett., 1996, vol. 76, no. 5, p. 772.

    Article  CAS  Google Scholar 

  71. Szymanski, M.A., Shluger, A.L., and Stoneham, A.M., Role of disorder in incorporation energies of oxygen atoms in amorphous silica, Phys. Rev. B, 2001, vol. 63, no. 22, p. 224207.

    Article  Google Scholar 

  72. Mukhopadhyay, S., Sushko, P.V., Stoneham, A.M., and Shluger, A.L., Modeling of the structure and properties of oxygen vacancies in amorphous silica, Phys. Rev. B, 2004, vol. 70, no. 19, p. 195203.

    Article  Google Scholar 

  73. El-Sayed, A.M., Watkins, M.B., Afanas’ev, V.V., and Shluger, A.L., Nature of intrinsic and extrinsic electron trapping in SiO2, Phys. Rev. B, 2014, vol. 89, no. 12, p. 125201.

    Article  Google Scholar 

  74. https://lammps.sandia.gov.

  75. Newsome, D.A., Sengupta, D., Foroutan, H., Russo, M.F., and van Duin, A.C., Oxidation of silicon carbide by O2 and H2O: A ReaxFF reactive molecular dynamics study, Part I, J. Phys. Chem. C, 2012, vol. 116, no. 30, pp. 16111–16121.

    Article  CAS  Google Scholar 

  76. Yu, Y., Wang, B., Wang, M., Sant, G., and Bauchy, M., Revisiting silica with ReaxFF: Towards improved predictions of glass structure and properties via reactive molecular dynamics, J. Non-Cryst. Solids, 2016, vol. 443, pp. 148–154.

    Article  CAS  Google Scholar 

  77. Yeon, J. and Van Duin, A.C.T., ReaxFF molecular dynamics simulations of hydroxylation kinetics for amorphous and nano-silica structure, and its relations with atomic strain energy, J. Phys. Chem. C, 2016, vol. 120, no. 1, pp. 305–317.

    Article  CAS  Google Scholar 

  78. Doremus, R.H., Viscosity of silica, J. Appl. Phys., 2002, vol. 92, no. 12, pp. 7619–7629.

    Article  CAS  Google Scholar 

  79. Mazurin, O.V., Steklovanie (Vitrification), Leningrad: Nauka, 1986.

    Google Scholar 

  80. Johnson, J.R., Bristow, R.H., and Blau, H.H., Diffusion of ions in some simple glasses, J. Am. Ceram. Soc., 1951, vol. 34, no. 6, pp. 165–172.

    Article  CAS  Google Scholar 

  81. Roma, G., Limoge, Y., and Martin-Samos, L., Oxygen and silicon self-diffusion in quartz and silica: The contribution of first principles calculations, Defect Diffus. Forum, 2006, vol. 258, pp. 542–553.

  82. Mikkelsen, J.C., Jr. Self-diffusivity of network oxygen in vitreous SiO2, Appl. Phys. Lett., 1984, vol. 45, no. 11, pp. 1187–1189.

    Article  CAS  Google Scholar 

  83. Williams, E.L., Diffusion of oxygen in fused silica, J. Am. Ceram. Soc., 1965, vol. 48, no. 4, pp. 190–194.

    Article  CAS  Google Scholar 

  84. Kalen, J.D., Boyce, R.S., and Cawley, J.D., Oxygen tracer diffusion in vitreous silica, J. Am. Ceram. Soc., 1991, vol. 74, no. 1, pp. 203–209.

    Article  CAS  Google Scholar 

  85. Rodríguez-Viejo, J., Sibieude, F., Clavaguera-Mora, M.T., and Monty, C., 18O diffusion through amorphous SiO2 and cristobalite, Appl. Phys. Lett., 1993, vol. 63, no. 14, pp. 1906–1908.

    Article  Google Scholar 

  86. Sucov, E.W., Diffusion of oxygen in vitreous silica, J. Am. Ceram. Soc., 1963, vol. 46, no. 1, pp. 14–20.

    Article  CAS  Google Scholar 

  87. Richet, P., Bottinga, Y., Denielou, L., Petitet, J.P., and Tequi, C., Thermodynamic properties of quartz, cristobalite and amorphous SiO2: Drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K, Geochim. Cosmochim. Acta, 1982, vol. 46, no. 12, pp. 2639–2658.

    Article  CAS  Google Scholar 

  88. Doremus, R.H., Viscosity of silica, J. Appl. Phys., 2002, vol. 92, no. 12, pp. 7619–7629.

    Article  CAS  Google Scholar 

  89. Takahashi, T., Fukatsu, S., Itoh, K.M., Uematsu, M., Fujiwara, A., Kageshima, H., Takahashi, Y., and Shiraishi, K., Self-diffusion of Si in thermally grown SiO2 under equilibrium conditious, J. Appl. Phys., 2003, vol. 93, no. 6, pp. 3674–3676.

    Article  CAS  Google Scholar 

  90. King, S.V., Ring configurations in a random network model of vitreous silica, Nature, 1967, vol. 213, no. 5081, pp. 1112–1113.

    Article  CAS  Google Scholar 

  91. Skuja, L., Optically active oxygen-deficiency-related centers in amorphous silicon dioxide, J. Non-Cryst. Solids, 1998, vol. 239, nos. 1–3, pp. 16–48.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The calculations were performed on the Matrosov computational cluster (Irkutsk Supercomputer Center, Siberian Branch, Russian Academy of Sciences, http://hpc.icc.ru).

Funding

This study was supported by a state task, project no. 0284-2021-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mysovsky.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mysovsky, A.S., Paklin, A.S. Molecular Dynamics Modeling of SiO2 Melts and Glass Formation Processes. Glass Phys Chem 49, 269–280 (2023). https://doi.org/10.1134/S1087659623600126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623600126

Keywords:

Navigation