Skip to main content
Log in

Synthesis and Investigation of New Vitreous Materials with Two Magnetic Subsystems (Fe3O4 and MnxOy)

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

New vitreous composite materials (CMs) with two magnetic subsystems are synthesized by impregnation magnetite-containing matrices from iron-containing nanoporous glasses in aqueous MnCl2 and H2C2O4 solutions and the subsequent formation of manganese oxides MnxOy (x = 1, 2, 3; y = 1, 2, 3, 4) inside the pore space of the matrices as a result of thermolysis of the reaction product of the dopants (MnC2O4). The chemical (elemental) and phase compositions, the valence-coordination state of iron and manganese, and the characteristics of the magnetic state of the synthesized CMs are studied and compared with the characteristics of nanoporous matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. Khimicheskaya entsiklopediya (Chemical Encyclopedia), 5 vols., Knunyants, I.L., Ed., Moscow: Sov. Encyclopedia, 1990, vol. 2, p. 131.

  2. Khimicheskaya entsiklopediya (Chemical Encyclopedia), 5 vols., Knunyants, I.L., Ed., Moscow: Sov. Encyclopedia, 1990, vol. 2, pp. 649–650.

REFERENCES

  1. López-Ortega, A., Estrader, M., Salazar-Alvarez, G., Roca, A.G., and Nogués, J., Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles, Phys. Rep., 2015, vol. 553, pp. 1–32.

    Article  Google Scholar 

  2. Yang, M.K., Park, J.-W., Ko, T.K., and Lee, J.-K., Bipolar resistive switching behavior in Ti/MnO2/Pt structure for nonvolatile memory devices, Appl. Phys. Lett., 2009, vol. 95, p. 042105.

    Article  Google Scholar 

  3. Prasad, B., Parkin, S., Prodromakis, T., Eom, C.-B., Sort, J., Macmanus-Driscoll, J.L., Material challenges for nonvolatile memory, APL Mater., 2022, vol. 10, no. 9, p. 090401.

    Article  CAS  Google Scholar 

  4. Akerman, J., Applied physics: Toward a universal memory, Science, 2005, vol. 308, no. 5721, pp. 508–510.

    Article  CAS  Google Scholar 

  5. Lee, K.S., Anisur, R.M., Kim, K.W., Kim, W.S., Park, T.J., Kang, E.J., and Lee, I.S., Seed size-dependent formation of Fe3O4/MnO hybrid nanocrystals: Selective, magnetically recyclable catalyst systems, Chem. Mater., 2012, vol. 24, no. 4, pp. 682–687.

    Article  CAS  Google Scholar 

  6. Zhang, L., Lian, J., Wu, L., Duan, Z., Jiang, J., and Zhao, L., Synthesis of a thin-layer MnO2 nanosheet-coated Fe3O4 nanocomposite as a magnetically separable photocatalyst, Langmuir, 2014, vol. 30, no. 23, pp. 7006–7016.

    Article  CAS  Google Scholar 

  7. Casavola, M., Falqui, A., García, M.A., García-Hernández, M., Giannini, C., Cingolani, R., and Cozzoli, P.D., Exchange-coupled bimagnetic cobalt/iron oxide branched nanocrystal heterostructures, Nano Lett., 2009, vol. 9, no. 1, pp. 366–376.

    Article  CAS  Google Scholar 

  8. Okada, T., González-Alfaro, Y., Espinosa, A., Watanabe, N., Haeiwa, T., Sonehara, M., Mishima, S., Sato, T., Muñoz-Noval, A., Aranda, P., Garcia-Hernández, M., and Ruiz-Hitzky, E., Magnetic and electronic properties of bimagnetic materials comprising cobalt particles within hollow silica decorated with magnetite nanoparticles, J. Appl. Phys., 2013, vol. 114, p. 124304.

    Article  Google Scholar 

  9. Anderson, N.R. and Camley, R.E., Temperature-dependent magnetization in bimagnetic nanoparticles with antiferromagnetic interfacial exchange, Phys. Rev. B, 2016, vol. 94, p. 134432.

    Article  Google Scholar 

  10. Zeng, H., Li, J., Wang, Z.L., Liu, J.P., and Sun, S., Bimagnetic core/shell FePt/Fe3O4 nanoparticles, Nano Lett., 2014, vol. 4, no. 1, pp. 187–190.

    Article  Google Scholar 

  11. Juhin, A., López-Ortega, A., Sikora, M., Carvallo, C., Estrader, M., Estradé, S., Peiró, F., Baró, M.D., Sainctavit, P., Glatzel, P., and Nogués, J., Direct evidence for an interdiffused intermediate layer in bi-magnetic core-shell nanoparticles, Nanoscale, 2014, vol. 6, no. 20, pp. 11911–11920.

    Article  CAS  Google Scholar 

  12. Kreisberg, V.A. and Antropova, T.V., Changing the relation between micro- and mesoporosity in porous glasses: The effect of different factors, Microporous Mesoporous Mater., 2014, vol. 190, pp. 128–138.

    Article  CAS  Google Scholar 

  13. Antropova, T.V., Inorganic functional glass-forming materials based on liquid alkaline borosilicate systems, in IKhS RAN-80 let. Sovremennye problemy neorganicheskoi khimii (80 Years of the Institute of Glass Chemistry of RAS, Modern Problems of Inorganic Chemistry, Collection of Articles), Shevchenko, V.Ya., Ed., St.-Petersburg: Art-Ekspress, 2016, pp. 117–137.

  14. Antropova, T.V., Pshenko, O.A., Anfimova, I.N., and Drozdova, I.A., Method for obtaining a composite multiferroic based on ferromagnetic porous glass, RF Patent 2594183, Byull. Izobret., 2016, no. 22.

  15. Pshenko, O.A., Arsentiev, M.Yu., Kurylenko, L.N., and Antropova, T.V., New composite materials based on nanoporous glasses containing manganese oxides, Glass Phys. Chem., 2021, vol. 47, no. 5, pp. 446–450.

    Article  CAS  Google Scholar 

  16. Cizman, A., Bednarski, W., Antropova, T.V., Pshenko, O., Rysiakiewicz-Pasek, E., Waplak, S., and Poprawski, R., Structural, dielectric, thermal and electron magnetic resonance studies of magnetic porous glasses filled with ferroelectrics, Composites, Part B, 2014, no. 64, pp. 16–23.

  17. Rysiakiewicz-Pasek, E., Antropova, T., Polyakova, I., Pshenko, O., and Cizman, A., New insight into phase transitions of porous glass-based ferroelectric nanocomposites, Materials, 2020, vol. 13, no. 17, pp. 3698-1–10.

  18. Vakhrushev, S.B., Golosovskii, I.V., Koroleva, E.Yu., Naberezhnov, A.A., Okuneva, N.M., Smirnov, O.P., Fokin, A.V., Towar, M., and Glazman, M., Structure and dielectric response of Na1 – xKxNO2 nanocomposite solid solutions, Phys. Solid State, 2008, vol. 50, no. 8, pp. 1548–1554.

    Article  CAS  Google Scholar 

  19. Antropova, T., Girsova, M., Anfimova, I., Drozdova, I., Polyakova, I., and Vedishcheva, N., Structure and spectral properties of the photochromic quartz-like glasses activated by silver halides, J. Non-Cryst. Solids, 2014, vol. 401, pp. 139–141.

    Article  CAS  Google Scholar 

  20. Lebedev, D., Novomlinsky, M., Kochemirovsky, V., Pyzhkov, I., Anfimova, I., Panov, M., and Antropova, T., Glass/Au composite membrans with gold nanoparticles synthesized inside pores for selective ion transport, Materials, 2020, vol. 13, no. 7, p. 1767.

  21. Balaev, D.A., Semenov, S.V., Dubrovskii, A.A., Krasikov, A.A., Popkov, S.I., Yakushkin, S.S., Kirillov, V.L., and Mart’yanov, O.N., Synthesis and magnetic properties of the core-shell Fe3O4/CoFe2O4 nanoparticles, Phys. Solid State, 2020, vol. 62, no. 2, pp. 285–290.

    Article  CAS  Google Scholar 

  22. Khabibullin, V.R. and Stepanov, G.V., Effect of a low-frequency magnetic field on the release of heat by magnetic nanoparticles of different shapes, Russ. J. Phys. Chem. A, 2020, vol. 94, no. 2, pp. 439–444.

    Article  CAS  Google Scholar 

  23. Pshenko, O.A., Drozdova, I.A., Polyakova, I.G., Rogacki, K., Ciźman, A., Poprawski, R., Rysiakiewicz-Pasek, E., and Antropova, T.V., Ferromagnetic iron-containing porous glasses, Glass Phys. Chem., 2014, vol. 40, no. 2, pp. 167–172.

    Article  CAS  Google Scholar 

  24. Antropova, T.V., Anfimova, I.N., Drozdova, I.N., Kostyreva, T.G., Polyakova, I.G., Pshenko, O.A., and Stolyar, S.V., Method for producing high-silica porous glass with magnetic properties, RF Patent 2540754, Byull. Izobret., 2015, no. 4.

  25. Okudera, H., Kihara, K., and Matsumoto, T., Temperature dependence of structure parameters in natural magnetite: Single crystal X-ray studies from 126 to 773 K, Acta Crystallogr., Sect. B, 1996, vol. 52, no. 3, pp. 450–457.

    Article  Google Scholar 

  26. Moore, T.E., Ellis, M., and Selwood, P.W., Solid oxides and hydroxides of manganese, J. Am. Chem. Soc., 1950, vol. 72, no. 2, pp. 856–866.

    Article  CAS  Google Scholar 

  27. Bricker, O., Some stability relations in the system Mn-O2–H2O at 25° and one atmosphere total pressure, Am. Mineralog., 1965, vol. 50, pp. 1296–1254.

    CAS  Google Scholar 

  28. Kondrashev, Yu.D. and Zaslavskii, A.I., Structure of modifications of manganese dioxide, Izv. Akad. Nauk SSSR, 1951, vol. 15, pp. 179–184.

    CAS  Google Scholar 

  29. Barrett, C.A. and Evans, E.B., Solid solubility and lattice parameter of NiO–MnO, J. Am. Ceram. Soc., 1964, vol. 47, no. 10, p. 533.

    Article  CAS  Google Scholar 

  30. Golosovsky, I.V., Mirebeau, I., Fauth, F., Kurdyukov, D.A., and Kumzerov, Yu.A., Low-temperature phase transition in nanostructured MnO embedded within the channels of MCM-41-type matrices, Phys. Rev. B, 2006, vol. 74, no. 5, p. 054433.

    Article  Google Scholar 

  31. Golosovsky, I.V., Arcon, D., Jaglicic, Z., Cevc, P., Sakhnenko, V.P., Kurdyukov, D.A., and Kumzerov, Y.A., ESR studies of MnO embedded into silica nanoporous matrices with different topology, Phys. Rev. B, 2005, vol. 72, no. 14, p. 144410.

    Article  Google Scholar 

  32. Golosovsky, I.V., Mirebeau, I., Elkaim, E., Kurdyukov, D.A., and Kumzerov, Y.A., Structure of MnO nanoparticles embedded into channel-type matrices, Eur. Phys. J. B, 2005, vol. 47, pp. 55–62.

    Article  CAS  Google Scholar 

  33. Pradhan, A.C., Nanda, B., Parida, K.M., and Rao, G.R., Fabrication of the mesoporous Fe@MnO2NPs-MCM-41 nanocomposite: An efficient photocatalyst for rapid degradation of phenolic compounds, J. Phys. Chem. C, 2015, vol. 119, no. 25, pp. 14145–14159.

    Article  CAS  Google Scholar 

  34. Cizman, A., Idczak, K., Krupinski, M., Girsova, M., Zarzycki, A., Rysiakiewicz-Pasek, E., Zielony, E., Staniorowski, P., Wrzesinska, P., Perlikowski, I., Jach, E., Ermakova, L., and Antropova, T., Comprehensive studies of activity of Ni in inorganic sodium borosilicate glasses doped with nickel oxide, Appl. Surf. Sci., 2021, vol. 558, p. 149891.

    Article  CAS  Google Scholar 

  35. Wagner, C.D., The NIST X-Ray Photoelectron Spectroscopy (XPS) Database, Washington, DC: U.S. Government Printing Office, 1991, p. 18.

    Google Scholar 

  36. Yamashita, T. and Hayes, P., Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci., 2008, vol. 254, no. 8, pp. 2441–2449.

    Article  CAS  Google Scholar 

  37. Lesiak, B., Rangam, N., Jiricek, P., Gordeev, I., Tóth, J., Kövér, L., Mohai, M., and Borowicz, P., Surface study of Fe3O4 nanoparticles functionalized with biocompatible adsorbed molecules, Front. Chem., 2019, vol. 7, p. 642.

    Article  CAS  Google Scholar 

  38. Fujii, T., de Groot, F.M.F., Sawatzky, G.A., Voogt, F.C., Hibma, T., and Okada, K., In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy, Phys. Rev. B, 1999, vol. 59, no. 4, pp. 3195–3202.

    Article  CAS  Google Scholar 

  39. Lei, K., Han, X., Hu, Y., Liu, X., Cong, L., Cheng, F., and Chen, J., Chemical etching of manganese oxides for electrocatalytic oxygen reduction reaction, Chem. Commun., 2015, vol. 51, pp. 11599–11602.

    Article  CAS  Google Scholar 

  40. Rosso, J.J. and Hochella, M.F., Jr., Natural iron and manganese oxide samples by XPS, Surf. Sci. Spectra, 1996, vol. 4, no. 3, pp. 253–265.

    Article  CAS  Google Scholar 

  41. Ilton, E.S., Post, J.E., Heaney, P.J., Ling, F.T., and Kerisit, S.N., XPS determination of Mn oxidation states in Mn (hydr)oxides, Appl. Surf. Sci., 2016, vol. 366, pp. 475–485.

    Article  CAS  Google Scholar 

  42. Pshenko, O.A., Antropova, T.V., Anfimova, I.N., and Kurilenko, L.N., Synthesis and functional properties of nanocomposites based on porous glasses containing manganese oxides, in Materialy Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem IV Baikal’skii materialovedcheskii forum (Proceedings of the All-Russian Conference with International Participation IV Baikal Material Science Forum, July 1–7, 2022, Ulan-Ude, Lake Baikal), Ulan-Ude: Buryat. Nauchn. Tsentr Sib. Otd. Ross. Akad. Nauk, 2022, pp. 409–410.

Download references

ACKNOWLEDGMENTS

The studies were carried out using the equipment of the resource centers of the Science Park of St. Petersburg State University “Physical methods of surface investigation” and “Innovative technologies of composite nanomaterials.”

Funding

This study was carried out as part of a state task of Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences with the support of the RF Ministry of Education and Science (state registration no. 1021050501068-5-1.4.3 (project FFEM-2022-0004)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Antropova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pshenko, O.A., Antropova, T.V., Kurilenko, L.N. et al. Synthesis and Investigation of New Vitreous Materials with Two Magnetic Subsystems (Fe3O4 and MnxOy). Glass Phys Chem 49, 256–263 (2023). https://doi.org/10.1134/S1087659623600114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623600114

Keywords:

Navigation