Skip to main content
Log in

Investigation of the Reaction-Sintered B4C–SiC Materials Produced by Hot Slip Casting

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Ceramic materials based on B4C–SiC are obtained by using the method of hot slip casting followed by reaction sintering (impregnation with liquid silicon). Composite ceramic samples are characterized by low density and porosity, and have strong mechanical characteristics. The microstructure of the obtained material is studied, and the uniformity of the distribution of boron carbide and silicon carbide particles in the structure of ceramic materials is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Perevislov, S.N., Panteleev, I.B., Shevchik, A.P., and Tomkovich, M.V., Microstructure and mechanical properties of SiC-materials sintered in the liquid phase with the addition of a finely dispersed agent, Refract. Ind. Ceram., 2018, vol. 58, no. 5, pp. 577–582.

    Article  CAS  Google Scholar 

  2. Nesmelov, D.D., Kozhevnikov, O.A., Ordan’yan, S.S., and Perevislov, S.N., Precipitation of the eutectic Al2O3–ZrO2(Y2O3) on the surface of SiC particles, Glass Ceram., 2017, vol. 74, nos. 1–2, pp. 43–47.

    Article  CAS  Google Scholar 

  3. Lee, Y.-I., Kim, Y.-W., and Mitomo, M., Microstructure stability of fine-grained silicon carbide ceramics during annealing, J. Mater. Sci., 2004, vol. 39, pp. 3613–3617.

    Article  CAS  Google Scholar 

  4. Lee, J.-H., Kim, D.-Y., and Kim, Y.-W., Grain boundary crystallization during furnace cooling of α-SiC sintered with Y2O3–Al2O3–CaO, J. Eur. Ceram. Soc., 2006, vol. 26, pp. 1267–1272.

    Article  CAS  Google Scholar 

  5. Perevislov, S.N., Lysenkov, A.S., Titov, D.D., Kim, K.A., Tomkovich, M.V., Nesmelov, D.D., and Markov, M.A., Liquid-sintered SiC based materials with additive low oxide oxides, IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 525, no. 1, p. 012073.

  6. Larsson, P., Axen, N., and Hogmark, S., Improvements of the microstructure and erosion resistance of boron carbide with additives, J. Mater. Sci., 2000, vol. 35, no. 14, pp. 3433–3440.

    Article  CAS  Google Scholar 

  7. Cho, N., Bao, Z., and Speyer, R.F., Density- and hardness-optimized pressureless sintered and post-hot isostatic pressed B4C, J. Mater. Res., 2005, vol. 20, no. 8, pp. 2110–2116.

    Article  CAS  Google Scholar 

  8. Du, X., Zhang, Z., Wang, Y., and Wang, J., Hot-pressing kinetics and densification mechanisms of boron carbide, J. Am. Ceram. Soc., 2015, vol. 98, no. 5, pp. 1400–1406.

    Article  CAS  Google Scholar 

  9. Zhang, C.P., Rue, H.Q., Yue, X.Y., and Wang, W., Studies on the RBBC ceramics fabricated by reaction bonded SiC, Rare Met. Mater. Eng., 2011, vol. 40, pp. 536–539.

    Google Scholar 

  10. Barick, P., Jana, D.C., and Thiyagarajan, N., Effect of particle size on the mechanical properties of reaction bonded boron carbide ceramics, Ceram. Int., 2013, vol. 39, no. 1, pp. 763–770.

    Article  CAS  Google Scholar 

  11. Zhang, C., Ru, H., Zong, H., and Sun, W., Coarsening of boron carbide grains during the infiltration of porous boron carbide preforms by molten silicon, Ceram. Int., 2016, vol. 42, no. 16, pp. 18681–18691.

    Article  CAS  Google Scholar 

  12. Golubeva, N., Plyasunkova, L., Kelina, I., Antonova, E., and Zhuravlev, A., Study of reaction-bonded boron carbide properties, Refract. Ind. Ceram., 2015, vol. 55, no. 5, pp. 414–418.

  13. Li, X., Jiang, D., Zhang, J., and Zhu, Y., Reaction-bonded B4C with high hardness, Int. J. Appl. Ceram. Technol., 2016, vol. 13, no. 3, pp. 584–592.

    Article  Google Scholar 

  14. Wang, Y., Tan, S., and Jiang, D., The effect of porous carbon preform and the infiltration process on the properties of reaction-formed SiC, Carbon, 2004, vol. 42, no. 8, pp. 1833–1839.

    Article  CAS  Google Scholar 

  15. Margiotta, J.C., Zhang, D., Nagle, D.C., and Feeser, C.E., Formation of dense silicon carbide by liquid silicon infiltration of carbon with engineered structure, J. Mater. Res., 2008, vol. 23, no. 5, pp. 1237–1248.

    Article  CAS  Google Scholar 

  16. Xu, S., Qiao, G., Li, D., and Yang, H., Reaction forming of silicon carbide ceramic using phenolic resin derived porous carbon preform, J. Eur. Ceram. Soc., 2009, vol. 29, no. 11, pp. 2395–2402.

    Article  CAS  Google Scholar 

  17. Nesmelov, D.D. and Perevislov, S.N., Reaction sintered materials based on boron carbide and silicon carbide, Glass Ceram., 2015, vol. 71, nos. 9–10, pp. 313–319.

    Article  CAS  Google Scholar 

  18. Chae, J.H., Park, J.S., Ahn, J.P., and Kim, K.H., Mechanical properties of B4C ceramics fabricated by a hot-press sintering, J. Korean Ceram. Soc., 2009, vol. 46, no. 1, pp. 81–85.

    Article  CAS  Google Scholar 

  19. Gnesin, G.G., Karbidkremnievye materialy (Silicon Carbide Materials), Moscow: Metallurgiya, 1977.

  20. Kozlov, G.V., Dolbin, I.V., and Koifman, O.I., A fractal model of reinforcement of carbon polymer-nanotube composites with ultralow concentrations of nanofiller, Dokl. Phys., 2019, vol. 64, no. 5, pp. 225–228.

    Article  CAS  Google Scholar 

  21. Novikov, D.V., Self-organization of phase clusters in homogeneously disordered polymer composite material, Phys. Solid State, 2018, vol. 60, no. 9, pp. 1879–1883.

    Article  CAS  Google Scholar 

  22. Feder, J., Fractals, New York: Plenum, 1998.

    Google Scholar 

  23. Krasovskii, A.N., Novikov, D.V., Vasina, E.S., Matveichikova, P.V., Sychev, M.M., and Rozhkova, N.N., Short-range order and fractal cluster structure of aggregates of barium titanate microparticles in a composite based on cyano-ethyl ester of polyvinyl alcohol, Phys. Solid State, 2015, vol. 57, no. 12, pp. 2555–2561.

    Article  CAS  Google Scholar 

  24. Makarenko, K.V., Fractal analysis of microstructures in graphitized cast iron, Vestn. Bryan. Tekh. Univ., 2016, vol. 49, no. 1, pp. 34–43.

    Google Scholar 

  25. Chumak, O.V., Entropii i fraktaly v analize dannykh (Entropies and Fractals in Data Analysis), Izhevsk: Inst. Komp. Issled., 2011.

  26. Meisel, L.V., Johnson, M., and Cote, P.J., Box-counting multifractal analysis, Phys. Rev., 1992, vol. 45, p. 6989.

    Article  CAS  Google Scholar 

  27. Chekuryaev, A.G., Sychov, M.M., and Myakin, S.V., Analysis of the structure of composite systems by means of fractal characteristics using the BaTiO3-fullerenol-CEPVA system as an example, Phys. Solid State, 2021, vol. 63, no. 6, pp. 789–796.

    Article  CAS  Google Scholar 

  28. Plotnick, R.E., Gardner, R.H., and O’Neill, R.V., Lacunarity indices as measures of landscape texture, Landscape Ecol., 1993, vol. 8, pp. 201–211.

    Article  Google Scholar 

  29. Gefen, Y., Meir, Y., and Aharony, A., Geometric implementation of hypercubic lattices with noninteger dimensionality by use of low lacunarity fractal lattices, Phys. Rev. Lett., 1983, vol. 50, pp. 145–148.

    Article  Google Scholar 

  30. Sychov, M.M., Chekuryaev, A.G., Bogdanov, S.P., and Kuznetsov, P.A., Digital materials science: Numerical characterization of steel microstructure, in Research and Education: Traditions and Innovations, Khakhomov, S., Semchenko, I., Demidenko, O., and Kovalenko, D., Eds., vol. 422 of Lecture Notes in Networks and Systems, Singapore: Springer, 2022.

  31. Markov, M.A., Ordan’yan, S.S., Vikhman, S.V., Perevislov, S.N., Krasikov, A.V., Bykova, A.D., and Staritsyn, M.V., Preparation of MoSi2–SiC–ZrB2 structural ceramics by free sintering, Refract. Ind. Ceram., 2019, vol. 60, no. 4, pp. 385–388.

    Article  CAS  Google Scholar 

  32. Perevislov, S.N., Tomkovich, M.V., Markov, M.A., Kravchenko, I.N., Kuznetsov, Y.A., and Erofeev, M.N., The influence of dispersed composition of SiC on the physico-mechanical properties of reactive-sintered silicon carbide, J. Mach. Manuf. Reliab., 2020, vol. 49, no. 6, pp. 511–517.

    Article  Google Scholar 

  33. Perevislov, S.N., Lysenkov, A.S., and Vikhman, S.V., Effect of Si additions on the microstructure and mechanical properties of hot-pressed B4C, Inorg. Mater., 2017, vol. 53, no. 4, pp. 376–380.

    Article  CAS  Google Scholar 

  34. Perevislov, S.N., Lysenkov, A.S., Titov, D.D., Tomkovich, M.V., Nesmelov, D.D., and Markov, M.A., Materials based on boron carbide obtained by reaction sintering, IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 525, no. 1, p. 012074.

Download references

ACKNOWLEDGMENTS

The experimental studies were carried out on the equipment of the Center for Collective Use “Composition, Structure, and Properties of Structural and Functional Materials” of the National Research Center “Kurchatov Institute,” Central Research Institute “Prometey” with the financial support of the Ministry of Science and Higher Education, agreement no. 13.TsKP.21.0014 (075-11 -2021-068) and unique identification number RF-2296.61321X0014.

Funding

This study was financially supported by grant no. 21-73-30019 of the Russian Science Foundation “New Physical and Chemical Principles of the Technology of Metallic, Metal-Ceramic, and Ceramic Materials with a Controlled Macro-, Micro-, and Nanostructure, as well as Unique Service Characteristics.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Chekuryaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyakov, A.N., Markov, M.A., Chekuryaev, A.N. et al. Investigation of the Reaction-Sintered B4C–SiC Materials Produced by Hot Slip Casting. Glass Phys Chem 49, 306–313 (2023). https://doi.org/10.1134/S1087659623600060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623600060

Keywords:

Navigation