Skip to main content
Log in

Structural Chemistry of Intermetallic Compounds: Geometric and Topological Analysis, Icosahedral Cluster Precursors K45 = Hg@Hg12@Cs12Hg20 and K81 = Hg@Hg12@Hg32@Hg36, as Well as the Self-Assembly of Crystal Structures Cs6Hg40cP46 and Cs12Hg162cI174

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

With the help of computer methods (software package ToposPro), geometric and topological analysis and modeling of the self-assembly of crystal structures of intermetallic compounds Cs6Hg40-cP46, a = 10.913 Å, Pm-3n and Cs12Hg162-cI174, a = 16.557 Å, and Im-3 are carried out. The precursor metal clusters are determined using an algorithm for decomposing structural graphs into cluster structures and by constructing a basic grid of the structure in the form of a graph whose nodes correspond to the position of the centers of the precursor clusters \({\text{S}}_{3}^{0}\). In the crystal structure Cs6Hg40-cP46, two-layer icosahedral clusters K45 = Hg@Hg12@Cs12Hg20 are established, and for the crystal structure Cs12Hg162-cI174, three-layer icosahedral clusters K81 = Hg@Hg12@Hg32@Hg36 are defined with symmetry g = m-3 and Cs-spacers. The symmetry and topological code of the processes of self-assembly of crystal structures of intermetallic compounds from precursors \({\text{S}}_{3}^{0}\) is reconstructed in the following form: chain \({\text{S}}_{3}^{1}\) → microlayer \({\text{S}}_{3}^{2}\) → microframework \({\text{S}}_{3}^{3}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Inorganic Crystal Structure Database (ICSD), Germany: Fachinformationszentrum Karlsruhe; USA: Natl. Inst. Stand. Technol.

  2. Villars, P. and Cenzual, K., Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds, Materials Park, OH: ASM Int.

  3. Duwell, E.J. and Baenziger, N.C., The crystal structures of KHg and LHg2, Acta Crystallogr., 1955, vol. 8, pp. 705–710.

    Article  CAS  Google Scholar 

  4. Deiseroth, H.J., Strunck, A., and Bauhofer, W., RbHg2 und CsHg2, Darstellung, Kristallstruktur, elektrische Leitfaehigkeit, Z. Anorg. Allgem. Chem., 1988, vol. 558, pp. 128–136.

    Article  CAS  Google Scholar 

  5. Deiseroth, H.J. and Strunck, A., Quadratische Hg4-cluster in der Verbindung CsHg, Angew. Chem., 1987, vol. 99, pp. 701–702.

    Article  CAS  Google Scholar 

  6. Deiseroth, H.J., Strunck, A., and Bauhofer, W., CsHg, eine ungewoehnliche Variante der Cs Cl - Struktur. Darstellung, Kristallstruktur und physikalische Eigenschaften, Z. Anorg. Allgem. Chem., 1989, vol. 575, pp. 31–38.

    Article  CAS  Google Scholar 

  7. Biehl, E. and Deiseroth, H.J., Eine neue, geordnete Defektvariante des BaAl4-Strukturtyps, Z. Anorg. Allgem. Chem., 1999, vol. 625, pp. 389–394.

    Article  CAS  Google Scholar 

  8. Todorov, E. and Sevov, S.C., Synthesis and structure of the alkali metal amalgams A3Hg20 (A= Rb, Cs), K3Hg11, Cs5 Hg19, and A7Hg31 (A = K, Rb), J. Solid-State Chem., 2000, vol. 149, pp. 419–427.

    Article  CAS  Google Scholar 

  9. Hoch, C. and Simon, A., Cs2Hg27, the mercury-richest amalgam with close relationship to the Bergman phases, Z. Anorg. Allgem. Chem., 2008, vol. 634, pp. 853–856.

    Article  CAS  Google Scholar 

  10. Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Structural chemistry of intermetallic compounds: Geometric and topological analysis; cluster precursors K4, K6, and K21; and self-assembly of crystal structure Cs2Hg2-aP8, Cs2Hg4-oI12, and Cs10Hg38-tI48, Glass Phys. Chem., 2022, vol. 48, no. 3, pp. 155–162

    Article  CAS  Google Scholar 

  11. Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Applied topological analysis of crystal structures with the program package ToposPro, Cryst. Growth Des., 2014, vol. 14, no. 7, pp. 3576–3585.

    Article  CAS  Google Scholar 

  12. Blatov, V.A., Ilyushin, G.D., and Proserpio, D.M., Nanocluster model of intermetallic compounds with giant unit cells: β,β'-Mg2Al3 polymorphs, Inorg. Chem., 2010, vol. 49, no. 4, pp. 1811–1818.

    Article  CAS  Google Scholar 

  13. Ilyushin, G.D., Theory of cluster self-organization of crystal-forming systems. Geometrical-topological modeling of nanocluster precursors with a hierarchical structure, Struct. Chem., 2012, vol. 20, no. 6, pp. 975–1043.

    Google Scholar 

  14. Shevchenko, V.Ya., Medrish, I.V., Ilyushin, G.D., and Blatov, V.A., From clusters to crystals: Scale chemistry of intermetallics, Struct. Chem., 2019, vol. 30, no. 6, pp. 2015–2027.

    Article  CAS  Google Scholar 

  15. Ilyushin, G.D., Intermetallic compounds KnMm (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and topological analysis, cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 7, pp. 1095–1105.

    Article  CAS  Google Scholar 

Download references

Funding

The analysis of the self-assembly of the crystal structure was supported by the RF Ministry of Science and Higher Education as part of a state task of the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences, and the nanocluster analysis was supported by the Russian Science Foundation (RNF no. 21-73-30019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Shevchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.Y., Blatov, V.A. & Ilyushin, G.D. Structural Chemistry of Intermetallic Compounds: Geometric and Topological Analysis, Icosahedral Cluster Precursors K45 = Hg@Hg12@Cs12Hg20 and K81 = Hg@Hg12@Hg32@Hg36, as Well as the Self-Assembly of Crystal Structures Cs6Hg40cP46 and Cs12Hg162cI174. Glass Phys Chem 48, 461–467 (2022). https://doi.org/10.1134/S1087659622700055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622700055

Keywords:

Navigation