Skip to main content
Log in

Cluster Self-Organization of Intermetallic Systems: New Cluster-Precursors K12 = 1Zn@11(Mg5Zn6), K5 = 0@5(LiZn4), K4 = 0@4(Li2Al2) in the Li12Mg20Al8Zn60-oC100 Crystal Structure and K3 = 0@3(CaMgGe), K4 = 0@4(LiCaMgGe), K4 = 0@4(Ca2Ge2) in the Li4Ca32Mg8Ge32-oP76 Crystal Structure

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract—

Geometrical and topological analysis of the crystal structures Li12Mg20Al8Zn60-oC100 (a = 5.102 Å, b = 23.477 Å, c = 13.691 Å, V = 1639.90 Å3, space group Cmcm) and Li4Ca32Mg8Ge32-oP76 (a = 21.98 Å, c = 18.560 Å, V = 1826.58 Å3, space group Pnma) are performed using computer methods (ToposPro software package). For the Li12Mg20Al8Zn60-oC100 three cluster precursors K12, K5, and K4 have been established. The cluster K12 = 1Zn@11(Mg5Zn6) in the form of coupled planar 5th rings Mg5 and Zn5, with Zn atoms located above their centers with symmetry m2m. The cluster K5 = 0@5(LiZn4) is in the form of a triangular bipyramid LiZn4 with symmetry 2. The cluster K4 = 0@4(Li2Al2) is in the form of a tetrahedra Li2Al2 with symmetry 2. For the Li4Ca32Mg8Ge32-oP76 two topological types of clusters have been established: triple ring K3 = 0@3(CaMgGe), tetrahedra K4 = 0@4(LiCaMgGe), and tetrahedra K4 = 0@4(Ca2Ge2). Clusters K3 = 0@3(CaMgGe) and K4 = 0@4(LiCaMgGe) form a suprapolyhedral ensemble (the tetramer) of four linked clusters 2(K3 + K4) with symmetry –1 centered at position 4a. Tetrahedra K4 = 0@ 4(Ca2Ge2) form a suprapolyhedral ensemble (the hexamer) of 6 linked clusters with symmetry –1. The symmetry and topological code of the processes of self-assembly of crystal structures Li12Mg20Al8Zn60-oC100 and Li4Ca32Mg8Ge32-oP76 from cluster precursors has been reconstructed in the form: primary chain → layer → framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Inorganic Crystal Structure Database (ICSD), Karlsruhe: Fachinformationszentrum, USA: Natl. Inst. Stand. Technol.

  2. Villars, P. and Cenzual, K., Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC), Materials Park, OH: ASM Int.

  3. Todorov, I. and Sevov, S.C., Synthesis and characterization of Na2Ba4Ga2Sb6 and Li13Ba8GaSb12, Z. Kristallogr., 2006, vol. 221, pp. 521–526.

    CAS  Google Scholar 

  4. Zuercher, F. and Nesper, R., Crystal structure of dodecastrontium octadecamagnesium dilithiumeicosagermanide, Sr12Mg17.9Li2.1Ge20, Z. Kristallogr., New Cryst. Struct., 1999, vol. 214, pp. 411–412.

    Article  Google Scholar 

  5. Makongo, J.P.A., You, T.-S., He, H., Suen, N.-Tz., and Bobev, S., New lithium-containing pnictides with 1-d infinite chains of supertetrahedral clusters: synthesis, crystal and electronicstructure of Ba4Li2Cd3 Pn 6 (Pn = P, As and Sb), Eur. J. Inorg. Chem., 2014, vol. 2014, pp. 5113–5124.

    Article  CAS  Google Scholar 

  6. Zuercher, F. and Nesper, R., Crystal structure of octacalcium dimagnesium monolithium octasilicide Ca8Mg2.0Li1.0Si8 and octacalcium dimagnesium monolithiumoctagermanide Ca8Mg1.82Li1.18Ge8, Z. Kristallogr., New Cryst. Struct., 2001, vol. 216, pp. 507–509.

    CAS  Google Scholar 

  7. Lee, Ch. and Miller, G.J., Li10Mg6Zn31Al a new intermetallic phase containing building blocks for decagonal quasicrystals, Angew. Chem., Int. Ed. Engl., 2001, vol. 40, pp. 4740–4742.

    Article  CAS  Google Scholar 

  8. Lin, Q. and Corbett, J.D., Li14.7 Mg36.8 Cu21.5 Ga66: An intermetallic representative of a type IV clathrate, Inorg. Chem., 2008, vol. 47, pp. 10825–831.

    Article  CAS  Google Scholar 

  9. Pavlyuk, N., Dmytriv, G., Pavlyuk, V., and Ehrenberg, H., Li20Mg6Cu13Al42: A new ordered quaternary superstructure to the icosahedral T-Mg32(Zn,Al)49 phase with fullerene-like Al60 cluster, Acta Crystallogr., Sect. B, 2019, vol. 75, pp. 168–174.

    Article  CAS  Google Scholar 

  10. Lee, Ch. and Miller, G.J., Experimental and theoretical studies of elemental site preferences in quasicrystalline approximants (r-phases) within the Li–Mg–Zn–Al system, Inorg. Chem., 2001, vol. 40, pp. 338–345.

    Article  CAS  Google Scholar 

  11. Boehme, B., Wei, K., Bobnar, M., Prots, Y., Burkhardt, U., Baitinger, M., Nolas, G.S., and Grin, Y., A type-II clathrate with a Li–Ge framework, Z. Kristallogr., Cryst. Mater., 2017, vol. 232, pp. 543–556.

    CAS  Google Scholar 

  12. Le Bail, A., Leblanc, M., and Audier, M., Crystalline phases related to the icosahedral Al-Li-Cu phase: A single-crystal X-ray diffraction study of the hexagonal Z-Al59Cu5Li26Mg10 phase, Acta Crystallogr., Sect. B, 1991, vol. 47, pp. 451–457.

    Article  Google Scholar 

  13. Chahine, A., Tillard-Charbonnel, M., and Belin, C., Crystal structure of lithium copper gallium indium (18/5/31/4), Li8Cu5 Ga31In4, Z. Kristallogr. New Cryst. Struct., 1995, vol. 210, pp. 80–80.

    Article  CAS  Google Scholar 

  14. Shevchenko, V.Ya. and Ilyushin, G.D., Cluster self-organization of intermetallic systems: New two-layer cluster precursors K57 = Li@15(Ga6Cu9)@ 41 (Cu15Mg26) and K41 = 0@8(Mg2Ga6)@33-(Li6Mg3Ga24) in the Li10Mg34Cu24Ga71-hP139 crystal structure and K5 = 0@Ca2LiInGe in the crystal structure structure Ca2LiInGe2-oP24, Phys. Chem. Glass, 2022, vol. 42, no. 6, in press.

  15. Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Applied topological analysis of crystal structures with the program package ToposPro, Cryst. Growth Des., 2014, vol. 14, no. 7, pp. 3576–3585.

    Article  CAS  Google Scholar 

  16. Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Cluster self-organization of intermetallic systems: A new cluster precursor K65 = 0@3@20@42 for self-assembly of the Sc96Mg8Zn600-cP704 crystal structure, Phys. Chem. Glass, 2022, vol. 42, no. 2, pp. 94–99.

    Article  Google Scholar 

  17. Ilyushin, G.D., Theory of cluster self-organization of crystal-forming systems. Geometrical-topological modeling of nanocluster precursors with a hierarchical structure, Struct. Chem., 2012, vol. 20, no. 6, pp. 975–1043.

    Google Scholar 

  18. Shevchenko, V.Ya., Medrish, I.V., Ilyushin, G.D., and Blatov, V.A., From clusters to crystals: Scale chemistry of intermetallics, Struct. Chem., 2019, vol. 30, no. 6, pp. 2015–2027.

    Article  CAS  Google Scholar 

  19. Ilyushin, G.D., Intermetallic compounds Kn M m (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and topological analysis, cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 7, pp. 1095–1105.

    Article  CAS  Google Scholar 

  20. Ilyushin, G.D., Intermetallic compounds Nak M n (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and topological analysis, cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 4, pp. 539–545.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Ya. Shevchenko or G. D. Ilyushin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.Y., Ilyushin, G.D. Cluster Self-Organization of Intermetallic Systems: New Cluster-Precursors K12 = 1Zn@11(Mg5Zn6), K5 = 0@5(LiZn4), K4 = 0@4(Li2Al2) in the Li12Mg20Al8Zn60-oC100 Crystal Structure and K3 = 0@3(CaMgGe), K4 = 0@4(LiCaMgGe), K4 = 0@4(Ca2Ge2) in the Li4Ca32Mg8Ge32-oP76 Crystal Structure. Glass Phys Chem 48, 478–486 (2022). https://doi.org/10.1134/S1087659622600612

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622600612

Keywords:

Navigation