Skip to main content
Log in

Structure of Sodium Borosilicate Glasses: Models and Experiment

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

This study is aimed at the analysis of two structural models of the structure of sodium borosilicate glasses (the Dell model and the thermodynamic (TD) model), which differ significantly in their fundamental principles. Where it is possible, we compare the model’s predictions regarding the structural features of glasses in the Na2O–B2O3–SiO2 system on the near (distribution of basic structural units) and average (the content of superstructural groups as a function of glass composition) scales with the experimental data. The analysis gives an idea of the information content of both models and their correctness in terms of their predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Wright, A.C., My borate life: An enigmatic journey, Int. J. Appl. Glass Sci., 2015, vol. 6, no. 1, pp. 45–63.

    Article  Google Scholar 

  2. Wright, A.C., Borate structures: Crystalline and vitreous, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B, 2010, vol. 51, no. 1, pp. 1–39.

  3. Dell, W.J., Bray, P.J., and Xiao, S.Z., 11B NMR studies and structural modeling of Na2O–B2O3–SiO2 glasses of high soda content, J. Non-Cryst. Solids, 1983, vol. 58, pp. 1–16.

    Article  CAS  Google Scholar 

  4. Feller, S., Mullenbach, T., Franke, M., Bista, S., O’Donovan-Zavada, A., Hopkins, K., Starkenberg, D., McCoy, J., Leipply, D., Stansberry, J., Troendle, E., Affatigato, M., Holland, D., Smith, M.E., Kroeker, S., Michaelis, V.K., and Wern, J.E.C., Structure and properties of barium and calcium borosilicate glasses, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B, 2012, vol. 53, no. 5, pp. 210–218.

    CAS  Google Scholar 

  5. Maekawa, H., Maekawa, T., Kawamura, K., and Yokokawa, T., The structural groups of alkali silicate glasses determined from 29Si MAS-NMR, J. Non-Cryst. Solids, 1991, vol. 127, pp. 53–64.

    Article  CAS  Google Scholar 

  6. Osipov, A.A. and Osipova, L.M., Qn distribution in silicates: Alkali silicate glasses and melts, Adv. Mater. Res., 2012, vols. 560–561, pp. 254–258.

    Article  Google Scholar 

  7. Osipov, A.A. and Osipova, L.M., New approach to modeling of a local structure of silicate glasses and melts, J. Phys.: Conf. Ser., 2013, vol. 410, 012019.

    CAS  Google Scholar 

  8. Mysen, B.O. and Frantz, J.D., Raman spectroscopy of silicate melts at magmatic temperatures: Na2O–SiO2, K2O–SiO2 and Li2O–SiO2 binary compositions in temperature range 25–1783°C, Chem. Geol., 1992, vol. 96, pp. 321–332.

    Article  CAS  Google Scholar 

  9. Maehara, T., Yano, T., and Shibata, S., Structural rules of phase separation in alkali silicate melts analyzed by high-temperature Raman spectroscopy, J. Non-Cryst. Solids, 2005, vol. 351, pp. 3685–3692.

    Article  CAS  Google Scholar 

  10. Malfait, W.J., Zakaznova-Herzog, V.P., and Halter, W.E., Quantitative Raman spectroscopy: Speciation of Na-silicate glasses and melts, Am. Mineral., 2008, vol. 93, pp. 1505–1518.

    Article  CAS  Google Scholar 

  11. Bykov, V.N., Osipov, A.A., and Anfilogov, V.N., Raman Spectroscopy of melts and glasses of the Na2O–SiO2 system, Rasplavy, 1998, no. 6, pp. 86–91.

  12. Mysen, B.O. and Frantz, J.D., Silicate melts at magmatic temperatures: In situ structure determination to 1651°C and effect of temperature and bulk composition on the mixing behavior of structural units, Contrib. Mineral. Petrol., 1994, vol. 117, pp. 1–14.

    Article  CAS  Google Scholar 

  13. Schneider, J., Mastelaro, V.R., Zanotto, E.D., Shakhmatrin, B.A., Vedishcheva, N.M., Wright, A.C., and Panepucci, H., Qn distribution in stoichiometric silicate glasses: Thermodynamic calculations and 29Si high resolution NMR measurements, J. Non-Cryst. Solids, 2003, vol. 325, pp. 164–178.

    Article  CAS  Google Scholar 

  14. Shakhmatkin, B.A. and Vedishcheva, N.M., A thermodynamic approach to modeling of physical properties of oxide glasses, Glass Phys. Chem., 1998, vol. 24, no. 3, pp. 229–236.

    CAS  Google Scholar 

  15. Vedishcheva, N.M. and Wright, A.C., Chemical structure of oxide glasses: A concept for establishing structure-property relationships, in Glass Selected Properties and Crystallization, Schmelzer, J.W.P., Ed., Berlin: De Gruyter, 2014, Chap. 5, pp. 269–299.

    Google Scholar 

  16. Vedishcheva, N.M., Shakhmatkin, B.A., and Wright, A.C., Thermodynamic modelling of the structure of sodium borosilicate glasses, Phys. Chem. Glasses, 2003, vol. 44, no. 3, pp. 191–196.

    CAS  Google Scholar 

  17. Vedishcheva, N.M., Polyakova, I.G., and Wright, A.C., Short and intermediate range order in sodium borosilicate glasses: A quantitative thermodynamic approach, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B, 2014, vol. 55, no. 6, pp. 225–236.

    Google Scholar 

  18. Mishra, R.K., Sudarsan, V., Kaushik, C.P., Raj, K., Kulshrehtha, S.K., and Tyagi, A.K., Effect of BaO addition on the structural aspects and thermophysical properties of sodium borosilicate glasses, J. Non-Cryst. Solids, 2007, vol. 353, pp. 1612–1617.

    Article  CAS  Google Scholar 

  19. Nanba, T., Nishimura, M., and Miura, Y., A theoretical interpretation of the chemical shift of 29Si NMR peaks in alkali borosilicate glasses, Geochim. Cosmochim. Acta, 2004, vol. 68, no. 24, pp. 5103–5111.

    Article  CAS  Google Scholar 

  20. Miyoshi, H., Chen, D., Masui, H., Yazawa, T., and Akai, T., Effect of calcium additive on the structural changes under heat treatment in sodium borosilicate glasses, J. Non-Cryst. Solids, 2004, vols. 345–346, pp. 99–103.

    Article  Google Scholar 

  21. Grandjean, A., Malki, M., Montouillout, V., Debruycker, F., and Massiot, D., Electrical conductivity and 11B NMR studies of sodium borosilicate glasses, J. Non-Cryst. Solids, 2008, vol. 354, pp. 1664–1670.

    Article  CAS  Google Scholar 

  22. Martens, R. and Müller-Warmuth, W., Structural groups and their mixing in borosilicate glasses of various compositions—an NMR study, J. Non-Cryst. Solids, 2000, vol. 265, pp. 167–175.

    Article  CAS  Google Scholar 

  23. Winterstein-Beckmann, A., Moncke, D., Palles, D., Kamitsos, E.I., and Wondraczek, L., A Raman-spectroscopic study of indentation-induced structural changes in technical alkali-borosilicate glasses with varying silicate network connectivity, J. Non-Cryst. Solids, 2014, vol. 405, pp. 196–206.

    Article  CAS  Google Scholar 

  24. Michel, F., Cormier, L., Lombard, P., Beuneu, B., Galoisy, L., and Calas, G., Mechanism of boron coordination change between borosilicate glasses and melts, J. Non-Cryst. Solids, 2013, vol. 379, pp. 169–176.

    Article  CAS  Google Scholar 

  25. Fleet, M.E. and Muthupari, S., Coordination of boron in alkali borosilicate glasses using XANES, J. Non-Cryst. Solids, 1999, vol. 255, pp. 233–241.

    Article  CAS  Google Scholar 

  26. Osipov, A.A., Osipova, L.M., and Eremyashev, V.E., Structure of alkali borosilicate glasses and melts according to Raman spectroscopy data, Glass Phys. Chem., 2013, vol. 39, no. 2, pp. 105–112.

    Article  CAS  Google Scholar 

  27. Manara, D., Grandjean, A., and Neuville, D.R., Advances in understanding the structure of borosilicate glasses: A Raman spectroscopy study, Am. Mineral., 2009, vol. 94, pp. 777–784.

    Article  CAS  Google Scholar 

  28. Koroleva, O.N., Shabunina, L.A., and Bykov, V.N., Structure of borosilicate glasses according to Raman spectroscopy data, Steklo Keram., 2010, no. 11, pp. 10–12.

  29. Furukawa, T. and White, W.B., Raman spectroscopic investigation of sodium borosilicate glass structure, J. Mater. Sci., 1981, vol. 16, pp. 2689–2700.

    Article  CAS  Google Scholar 

  30. Windisch, C.F., Jr., Pierce, E.M., Burton, S.D., and Bovaird, C.C., Deep-UV Raman spectroscopic analysis of structure and dissolution rates of silica-rich sodium borosilicate glasses, J. Non-Cryst. Solids, 2011, vol. 357, pp. 2170–2177.

    Article  CAS  Google Scholar 

  31. Inoue, H., Masuno, A., and Watanabe, Y., Modeling of the structure of sodium borosilicate glasses using pair potentials, J. Phys. Chem. B, 2012, vol. 116, pp. 12325–12331.

    Article  CAS  Google Scholar 

  32. Gaafar, M.S. and Marzouk, S.Y., Mechanical and structural studies on sodium borosilicate glasses doped with Er2O3 using ultrasonic velocity and FTIR spectroscopy, Phys. B (Amsterdam, Neth.), 2007, vol. 388, pp. 294–302.

    Google Scholar 

  33. Du, L.-S. and Stebbins, J.F., Nature of silicon-boron mixing in sodium borosilicate glasses: A high-resolution 11B and 17O NMR study, J. Phys. Chem. B, 2003, vol. 107, pp. 10063–10076.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Osipov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osipov, A.A., Osipova, L.M. Structure of Sodium Borosilicate Glasses: Models and Experiment. Glass Phys Chem 48, 519–536 (2022). https://doi.org/10.1134/S1087659622600521

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622600521

Keywords:

Navigation