Skip to main content
Log in

Low-Frequency Light Scattering and Superstructural Groupings in Alkali Borate Glasses

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we try to establish the structural base for the behavior of the correlational length, lc (the parameter characterizing the linear size of structural inhomogeneities) as a function of the modifier oxide content in lithium and sodium borate glasses. With the content of the modifying oxide up to ∼30 mol %, the considered glasses are characterized by a significant similarity of the structure in the near-order region (the distribution of basic structural units) with a significant difference in their chemical structure and, as a consequence, the structure in the intermediate-order region. Based on thermodynamic modeling data (distribution of superstructural groups) and geometric analysis of structural groups in the intermediate-order region present in Na2O–B2O3 and Li2O–B2O3 glasses, the average size of the region of the ordered arrangement of atoms, \(\left\langle R \right\rangle \), is calculated. Matching the correlational length lc and average size \(\left\langle R \right\rangle \) showed the presence of a simple linear and universal relationship between these two parameters characterizing the structural features of glasses in different spatial scales. The existence of such a relationship means that the change in the correlational length is closely related to the features of the distribution of superstructural groups and not to the modification of the glass structure at the level of basic structural units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Schirmacher, W., Schmid, B., Tomaras, C., Viliani, G., Baldi, G., Ruocco, G., and Scopig, N.T., Vibrational excitations in systems with correlated disorder, Phys. Status Solidi C, 2008, vol. 5, no. 3, pp. 862–866.

    Article  CAS  Google Scholar 

  2. Buchenau, U., Galperin, Y.M., Gurevich, V.L., Parshin, D.A., Ramos, M.A., and Schober, H.R., Interaction of soft modes and sound waves in glasses, Phys. Rev. B, 1992, vol. 46, no. 5, pp. 2798–2808.

    Article  CAS  Google Scholar 

  3. Gurevich, V.L., Parshin, D.A., and Schober, Y.R., Anharmonicity, vibrational instability, and the boson peak in glasses, Phys. Rev. B, 2003, vol. 67, 094203.

  4. Flores-Ruiz, H.M. and Naumis, G.G., The transverse nature of the Boson peak: A rigidity theory approach, Phys. B (Amsterdam, Neth.), 2013, vol. 418, pp. 26–31.

    Google Scholar 

  5. Derlet, P.M., Maab, R., and Loffler, J.F., The Boson peak of model glass systems and its relation to atomic structure, Eur. Phys. J. B, 2012, vol. 85, 148.

  6. Schroeder, J., Wu, W., Apkarian, J.L., Lee, M., Hwa, L.-G., and Moynihan, C.T., Raman scattering and boson peaks in glasses: Temperature and pressure effects, J. Non-Cryst. Solids, 2004, vol. 349, pp. 88–97.

    Article  CAS  Google Scholar 

  7. Denisov, Yu.V. and Zubovich, A.A., Boson peak and medium-range order structure of alkali borate glasses, Glass Phys. Chem., 2003, vol. 29, no. 4, pp. 345–352.

    Article  CAS  Google Scholar 

  8. Baranov, A.V., Perova, T.S., Petrov, V.I., Vij, J.K., and Nielsen, O.F., Nature of the boson peak in Raman spectra of sodium borate glass systems: Influence of structural and chemical fluctuations and intermolecular interactions, J. Raman Spectrosc., 2000, vol. 31, pp. 819–825.

    Article  CAS  Google Scholar 

  9. Montagna, M., Viliani, G., and Duval, E., Models of low-wavenumber Raman scattering from glasses, J. Raman Spectrosc., 1996, vol. 27, pp. 707–713.

    Article  CAS  Google Scholar 

  10. Duval, E., Boukenter, A., and Achibat, T., Vibrational dynamics and the structure of glasses, J. Phys.: Condens. Matter, 1990, vol. 2, pp. 10227–10234.

    Google Scholar 

  11. Elliott, S.R., A unified model for the low-energy vibrational behavior of amorphous solids, Europhys. Lett., 1992, vol. 19, no. 3, pp. 201–206.

    Article  CAS  Google Scholar 

  12. Bondarev, V.N. and Zelenin, S.V., Relaxing local modes and the theory of low-frequency Raman scattering in glasses, Phys. Solid State, 2003, vol. 45, no. 5, pp. 830–837.

    Article  CAS  Google Scholar 

  13. D’Angelo, G., Carini, G., Crupi, C., Koza, M., Tripodo, G., and Vasi, C., Boson peak in alkaline borate glasses: Raman spectroscopy, neutron scattering, and specific-heat measurements, Phys. Rev. B, 2009, vol. 79, 014206.

  14. Uchino, T., Lin, H., Kozuka, H., and Yoko, T., The microscopic basis of the low-frequency excitations in B2O3 glass, ICR Annu. Rep., 1996, vol. 3, pp. 22–23.

    CAS  Google Scholar 

  15. Malinovskii, V.K., Disordered solids: Universal behavior of structure, dynamics, and transport phenomena, Phys. Solid State, 1999, vol. 41, no. 5, pp. 725–728.

    Article  CAS  Google Scholar 

  16. Pang, T., Local vibrational states of glasses, Phys. Rev. B, 1992, vol. 45, no. 5, pp. 2490–2492.

    Article  CAS  Google Scholar 

  17. Leonforte, F., Boissiere, R., Tanguy, A., Wittmer, J.P., and Barrat, J.-L., Continuum limit of amorphous elastic bodies. III. Three-dimentional systems, Phys. Rev. B, 2005, vol. 72, 224206.

  18. Duval, E., Mermet, A., and Saviot, L., Boson peak and hybridization of acoustic modes with vibrations of nanometric heterogeneities in glasses, Phys. Rev. B, 2007, vol. 75, 024201.

  19. Malinovskii, V.K., Novikov, V.N., and Sokolov, A.P., Nanometer-scale structure of disordered bodies, Phys. Usp., 1993, vol. 36, no. 5, pp. 440–444.

    Article  Google Scholar 

  20. Hong, L., Novikov, V.N., and Sokolov, A.P., Is there a connection between fragility of glass forming systems and dynamic heterogeneity/cooperativity?, J. Non-Cryst. Solids, 2011, vol. 357, pp. 351–356.

    Article  CAS  Google Scholar 

  21. Kojima, S., Novikov, V.N., Kofu, M., and Yamamuro, O., Neutron scattering studies of static and dynamic correlation lengths in alkali metal borate glasses, J. Non-Cryst. Solids, 2019, vol. 518, pp. 18–23.

    Article  CAS  Google Scholar 

  22. Ryzhov, V.A. and Bershtein, V.A., Low-frequency librational vibrations, boson peak, and interchain interactions in a vitreous polymer, Phys. Solid State, 2008, vol. 50, no. 10, pp. 1985–1990.

    Article  CAS  Google Scholar 

  23. Ando, M.F., Fuhrmann, S., Pan, Z., Rodrigues, B.P., Mori, T., Ebbinghaus, S.G., Wondraczek, K., Kitani, S., and Wondraczek, L., Boson peak and structural heterogeneity in ternary SiO2–Al2O3–B2O3 glasses, J. Am. Ceram. Soc., 2021, vol. 104, no. 10, pp. 4991–5000.

    Article  CAS  Google Scholar 

  24. Kojima, S. and Kodama, M., Boson peak of lithium and cesium borate glass studied by Raman scattering, IOP Conf. Ser.: Mater. Sci. Eng., 2011, vol. 18, 112004.

  25. Kojima, S. and Kodama, M., Boson peak in modified borate glasses, Phys. B (Amsterdam, Neth.), 1999, vols. 263–264, pp. 336–338.

    Google Scholar 

  26. Kojima, S., Matsuda, Y., Kodama, M., Kawaji, H., and Atake, T., Boson peaks and excess heat capacity of lithium borate glasses, Chin. J. Phys., 2011, vol. 49, no. 1, pp. 414–419.

    CAS  Google Scholar 

  27. Kojima, S., Novikov, V.N., and Kodama, M., Fast relaxation, boson peak, and anharmonicity in Li2O–B2O3 glasses, J. Chem. Phys., 2000, vol. 113, no. 15, pp. 6344–6350.

    Article  CAS  Google Scholar 

  28. Michaelis, V.K., Aguiar, P.M., and Kroeker, S., Probing alkali coordination environments in alkali borate glasses by multinuclear magnetic resonance, J. Non-Cryst. Solids, 2007, vol. 353, pp. 2582–2590.

    Article  CAS  Google Scholar 

  29. Clarida, W.J., Berryman, J.R., Affatigato, M., Feller, S.A., Kroeker, S.C., Ash, J., Zwanziger, J.W., Meyer, B., Borsa, F., and Martin, S.W., Dependence of N4 upon alkali modifier in binary borate glasses, Phys. Chem. Glasses, 2003, vol. 44, no. 3, pp. 215–217.

    CAS  Google Scholar 

  30. Berryman, J.R., Feller, S.A., Affatigato, M., Kodama, M., Meyer, B.M., Martin, S.W., Borsa, F., and Kroeker, S., Thermal, acoustic, and nuclear magnetic resonance studies of cesium borate glasses, J. Non-Cryst. Solids, 2001, vols. 293–295, pp. 483–489.

    Article  Google Scholar 

  31. Wright, A.C., My borate life: An enigmatic journey, Int. J. Appl. Glass Sci., 2015, vol. 6, no. 1, pp. 45–63.

    Article  Google Scholar 

  32. Wright, A.C., Borate structures: Crystalline and vitreous, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B, 2010, vol. 51, no. 1, pp. 1–39.

    CAS  Google Scholar 

  33. Shakhmatkin, B.A. and Vedishcheva, N.M., A thermodynamic approach to the modeling of physical properties of oxide glasses, Glass Phys. Chem., 1998, vol. 24, no. 3, pp. 229–236.

    CAS  Google Scholar 

  34. Wright, A.C., Dalba, G., Rocca, F., and Vedishcheva, N.M., Borate versus silicate glasses: Why are they so different?, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B, 2010, vol. 51, no. 5, pp. 233–265.

    CAS  Google Scholar 

  35. Vedishcheva, N.M. and Wright, A.C., Chemical structure of oxide glasses: A concept for establishing structure-property relationship, in Glass Selected Properties and Crystallization, Schmelzer, J.W.P., Ed., Berlin: de Gruyter, 2014, pp. 269–299.

  36. Wright, A.C., Sinclair, R.N., Grimley, D.I., Hulme, R.A., Vedishcheva, N.M., Shakhmatkin, B.A., Hannon, A., Feller, S.A., Meyer, B.M., Royle, M.L., and Wilkerson, D.L., Borate glasses, superstructural units and the random network theory, Glass Phys. Chem., 1996, vol. 22, no. 4, pp. 268–278.

    CAS  Google Scholar 

  37. Hannon, A.C., Grimley, D.I., Hulme, R.A., Wright, A.C., and Sinclair, R.N., Boroxol groups in vitreous boron oxide: New evidence from neutron diffraction and inelastic neutron scattering studies, J. Non-Cryst. Solids, 1994, vol. 177, pp. 299–316.

    Article  CAS  Google Scholar 

  38. Osipov, A.A. and Osipova, L.M., Boson peak and superstructural groups in Na2O-B2O3 glasses, Adv. Condens. Mater. Phys., 2018, 6746023.

    Book  Google Scholar 

  39. Kodama, M. and Kojima, S., Anharmonicity and fragility in lithium borate glasses, J. Therm. Anal. Calorim., 2002, vol. 69, pp. 961–970.

    Article  CAS  Google Scholar 

  40. Kodama, M., Feller, S., and Affatigato, M., Thermal and mechanical properties of lithium borate glasses in relation to the glass structure, J. Therm. Anal. Calorim., 1999, vol. 57, pp. 787–796.

    Article  CAS  Google Scholar 

  41. Kodama, M. and Kojima, S., Velocity of sound in and elastic properties of alkali metal borate glasses, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B, 2014, vol. 55, no. 1, pp. 1–12.

    CAS  Google Scholar 

  42. Mazurin, O.V., Strel’tsina, M.V., and Shvaiko-Shvaikovskaya, T.P., Svoistva stekol i stekloobrazuyushchikh rasplavov (Properties of Glasses and Glass-Forming Melts), Leningrad: Nauka, 1980, vol. 4, part 1.

  43. Cormier, L., Calas, G., and Beuneu, B., Quantification of boron coordination changes between lithium borate glasses and melts by neutron diffraction, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B, 2009, vol. 50, no. 3, pp. 195–200.

    CAS  Google Scholar 

  44. Doweidar, H., El-Damrawi, G.M., Moustafa, Y.M., and Ramadan, R.M., Density of mixed alkali borate glasses: A structural analysis, Phys. B (Amsterdam, Neth.), 2005, vol. 362, pp. 123–132.

    Google Scholar 

  45. Matsuda, Y., Kawaji, H., Atake, T., Yamamura, Y., Yasuzuka, S., Saito, K., and Kojima, S., Non-Debye heat capacity and boson peak of binary lithium borate glasses, J. Non-Cryst. Solids, 2011, vol. 357, pp. 534–537.

    Article  CAS  Google Scholar 

  46. Lorosch, J., Couzi, M., Pelous, J., Vacher, R., and Levasseur, A., Brillouin and Raman scattering study of borate glasses, J. Non-Cryst. Solids, 1984, vol. 69, pp. 1–25.

    Article  Google Scholar 

  47. Mozzi, R.L. and Warren, B.E., The structure of vitreous boron oxide, J. Appl. Crystallogr., 1970, vol. 3, pp. 251–257.

    Article  CAS  Google Scholar 

  48. Wright, A.C., Shaw, J.L., Sinclair, R.N., Vedishcheva, N.M., Shakhmatkin, B.A., and Scales, C.R., The use of crystallographic data in interpreting the correlation function for complex glasses, J. Non-Cryst. Solids, 2004, vols. 345–346, pp. 24–33.

    Article  Google Scholar 

  49. Wright, A.C., Sinclair, R.N., Stone, C.E., Shaw, J.L., Feller, S.A., Kiczenski, T.J., Williams, R.B., Berger, H.A., Fischer, H.E., and Vedishcheva, N.M., A neutron diffraction study of 2M2O.5B2O3 (M = Li, Na, K, Rb, Cs and Ag) and 2MO5B2O3 (M = Ca, Ba) glasses, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B, 2012, vol. 53, no. 5, pp. 191–204.

    CAS  Google Scholar 

  50. Hyman, A., Perloff, A., Mauer, F., and Block, S., The crystal structure of sodium tetraborate, Acta Crystallogr., 1967, vol. 22, pp. 815–821.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Osipov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osipov, A.A., Osipova, L.M. Low-Frequency Light Scattering and Superstructural Groupings in Alkali Borate Glasses. Glass Phys Chem 48, 487–496 (2022). https://doi.org/10.1134/S1087659622600478

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622600478

Keywords:

Navigation