Skip to main content
Log in

Influence of 3D Printing Parameters on the Physical and Mechanical Characteristics of Materials

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract—

Thermoplastic elastomer based on butadiene–styrene rubber has been developed for 3D printing using fused deposition modeling (FDM). The influence of the intensity of the flow and the direction of printing on the physical and mechanical characteristics of the material was investigated. A comparative analysis of 3D printed products and products made by thermal pressing was carried out. The developed material shows an increase in strength during manufacture using fused deposition modeling by 18% compared to the molded sample, as well as an increase in strength by 25% and elongation by 50% with increased print intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. ISO 37: 2013 Rubber, vulcanized or thermoplastic. Determination of tensile stress-strain properties, 2016.

REFERENCES

  1. Dal, H., Gultekin, O., and Acıkgoz, K., An extended eight-chain model for hyperelastic and finite viscoelastic response of rubberlike materials: Theory, experiments and numerical aspects, J. Mech. Phys. Solids, 2020, vol. 145, 104159.

    Article  Google Scholar 

  2. León, M., Marcos-Fernández, Á., and Rodríguez-Hernández, J., Impresión 3d conmateriales elástoméricos, Rev. Plast. Mod., 2019, vol. 118, pp. 5–15.

    Google Scholar 

  3. Bakır, A.A., Neshani, R., and Özerinç, S., Mechanical properties of 3D-printed elastomers produced by fused deposition modeling, in Fused Deposition Modeling Based 3D Printing, Cham: Springer, 2021, pp. 107–130.

    Google Scholar 

  4. Rodríguez-Panes, A., Claver, J., and Camacho, A.M., The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: A comparative analysis, Materials, 2018, vol. 11, 1333.

    Article  Google Scholar 

  5. Chadha, A., Haq, M.I.U., Raina, A., Singh, R.R., Penumarti, N.B., and Bishnoi, M.S., Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts, World J. Eng., 2019, vol. 16, pp. 550–559.

    Article  CAS  Google Scholar 

  6. Wang, S., Ma, Y., Deng, Z., Zhang, S., and Cai, J., Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials, Polym. Test., 2020, vol. 86, 106483.

    Article  CAS  Google Scholar 

  7. Valerga, A.P., Batista, M., Salguero, J., and Girot, F., Influence of PLA filament conditions on characteristics of FDM parts, Materials, 2018, vol. 11, 1322.

    Article  Google Scholar 

  8. Valean, C., Marsavina, L., Marghitas, M., Linul, E., Razavi, J., and Berto, F., Effect of manufacturing parameters on tensile properties of FDM printed specimens, Proc. Struct. Integr., 2020, vol. 26, pp. 313–320.

    Google Scholar 

  9. León-Calero, M., Reyburn Valés, S.C., Marcos-Fernández, Á., and Rodríguez-Hernandez, J., 3D printing of thermoplastic elastomers: Role of the chemical composition and printing parameters in the production of parts with controlled energy absorption and damping capacity, Polymers, 2021, vol. 13, 3551.

    Article  Google Scholar 

  10. Timoshenko, M.V., Balabanov, S.V., Sychev, M.M., and Nikiforov, D.I., Application of thermoplastic elastomer for 3D printing by fused deposition modeling (FDM), Glass Phys. Chem., 2021, vol. 47, no. 5, pp. 502–504.

    Article  CAS  Google Scholar 

  11. Lee, H., Eom, R.-I., and Lee, Y., Evaluation of the mechanical properties of porous thermoplastic polyurethane obtained by 3D printing for protective gear, Adv. Mater. Sci. Eng., 2019, pp. 1–10.

  12. Bates, S.R., Farrow, I.R., and Trask, R.S., 3D printed polyurethane honeycombs for repeated tailored energy absorption, Mater. Des., 2016, vol. 112, pp. 172–183.

    Article  CAS  Google Scholar 

  13. Duan, S., Tao, Y., Lei, H., Wen, W., Liang, J., and Fang, D., Enhanced out-of-plane compressive strength and energy absorption of 3D printed square and hexagonal honeycombs with variable-thickness cell edges, Extrem. Mech. Lett., 2018, vol. 18, pp. 9–18.

    Article  Google Scholar 

  14. Ge, C., Cormier, D., and Rice, B., Damping and cushioning characteristics of Polyjet 3D printed photopolymer with Kelvin model, J. Cell. Plast., 2021, vol. 57, pp. 517–534.

    Article  CAS  Google Scholar 

  15. Ge, C., Priyadarshini, L., Cormier, D., Pan, L., and Tuber, J., A preliminary study of cushion properties of a 3D printed thermoplastic polyurethane Kelvin foam, Packag. Technol. Sci., 2018, vol. 31, pp. 361–368.

    Article  CAS  Google Scholar 

  16. Dadbakhsh, S., Verbelen, L., Vandeputte, T., Strobbe, D., van Puyvelde, P., and Kruth, J.-P., Effect of powder size and shape on the SLS processability and mechanical properties of a TPU elastomer, Phys. Proc., 2016, vol. 83, pp. 971–980.

    Article  CAS  Google Scholar 

  17. Płatek, P., Rajkowski, K., Cieplak, K., Sarzynski, M., Małachowski, J., Wozniak, R., and Janiszewski, J., Deformation process of 3D printed structures made from flexible material with different values of relative density, Polymers, 2020, vol. 12, 2120.

    Article  Google Scholar 

  18. Singh, S. and Singh, R., Mechanical characterization and comparison of additive manufactured ABS, Polyflex™ and ABS/Polyflex™ blended functional prototypes, Rapid Prototyp. J., 2020, vol. 26, pp. 225–237.

    Article  Google Scholar 

  19. Yarwindran, M., Saaban, N.A., Ibrahim, M., and Periyasamy, R., Thermoplastic elastomer infill pattern impact on mechanical properties 3D printed customized orthotic insole, ARPN J. Eng. Appl. Sci., 2016, vol. 11, pp. 6519–6524.

    Google Scholar 

  20. Cakar, S. and Ehrmann, A., 3D printing with flexible materials-mechanical properties and material fatigue, Macromol. Symp., 2021, vol. 395, 2000203.

    Article  CAS  Google Scholar 

  21. Liu, C.-H., Chen, Y., and Yang, S.-Y., Quantification of hyperelastic material parameters for a 3D-printed thermoplastic elastomer with different infill percentages, Mater. Today Commun., 2021, vol. 26, 101895.

    Article  CAS  Google Scholar 

  22. Fatimatuzahraa, A.W., Farahaina, B., and Yusoff, W.A.Y., The effect of employing different raster orientations on the mechanical properties and microstructure of Fused Deposition Modeling parts, in Proceedings of the 2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA), 2011, pp. 22–27.

  23. Sayanjali, M., Rezadoust, A.M., and Abbassi Sourki, F., Tailoring physico-mechanical properties and rheological behavior of ABS filaments for FDM via blending with SEBS TPE, Rapid Prototyp. J., 2020, vol. 26, no. 10, pp. 1687–1700.

    Article  Google Scholar 

  24. Processing of Thermoplastic Materials, Bernhardt, E.C., Ed., New York: Reinhold, 1959.

  25. Timoshenko, M.V., Balabanov, S.V., Sychev, M.M., and Nikiforov, D.I., Thermoplastic elastomer for 3D printing by fused deposition modeling, Polym. Sci., Ser. A, 2021, vol. 63, pp. 652–656.

    Article  CAS  Google Scholar 

  26. Schirmeistera, C.G., Heesa, T., Lichtb, E.H., and Mülhaupt, R., 3D printing of high density polyethylene by fused filament fabrication, Addit. Manuf., 2019, vol. 28, pp. 152–159.

    Google Scholar 

  27. Shaik, Y.P., Jens, S., and Ram Chowdary, T., Impact of 3D printing patterns and post consolidation pressure on mechanical properties of FDM 3D printed samples, Am. Res. J., 2021, vol. 2, pp. 1–10.

    Article  Google Scholar 

Download references

Funding

The study was supported by a grant from the Russian Science Foundation (project no. 20-73-10171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Timoshenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timoshenko, M.V., Koshevaya, K.S., Balabanov, S.V. et al. Influence of 3D Printing Parameters on the Physical and Mechanical Characteristics of Materials. Glass Phys Chem 48, 333–339 (2022). https://doi.org/10.1134/S1087659622040137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622040137

Keywords:

Navigation