Skip to main content
Log in

Glass Ceramics Based on Silicon Dioxide as a Promising Material for Use in Nuclear Power Engineering

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

This paper considers options for using glass ceramics based on silicon dioxide as a promising material for nuclear power engineering, in particular, as shells and containers when handling liquid radioactive waste (LRW) and solid radioactive waste (SRW); canisters, ampules, and other shells for hermetic isolation from the environment of spent nuclear fuel (SNF) or irradiated fuel assemblies (IFAs); crucibles and vessels for melting, compacting, and disposing SRW; and hermetic shells or liners using composite combinations of glass ceramics and traditional materials to create special containers that provide long-term (more than 1000 years) storage or disposal of SNF. Methods for obtaining large-sized products from silicon-containing glass–ceramic materials are presented. Thermophysical calculations are carried out, which showed that the most favorable indicators for the state of temperature fields can be achieved in canisters made of hexagonal-shaped glass–ceramic materials for IFAs with the smallest possible volume of the gas cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. http://ulquartz.ru/produkcziya-i-uslugi.html

REFERENCES

  1. Spravochnik po proizvodstvu stekla (Glass Manufacturing Handbook), Kitaigorodskii, I.I. and Sil’vestrovich, S.I., Eds., Moscow: Gosstroiizdat, 1963, vol. 1, pp. 558–585.

  2. 60 Jahre Quarzglas, 25 Jahre Hochvakuumtechnik, Hanau: Heraeus W.C., 1961.

  3. Leko, V.K. and Komarova, L.A., Study of the induction period of crystallization of quartz glasses, Izv. Akad. Nauk SSSR, Neorg. Mater., 1971, vol. 7, no. 12, pp. 2240–2244.

    CAS  Google Scholar 

  4. Ulmann, D.R., Crystal growth in glass-forming systems—a review, in Advances in Nucleation and Crystallization in Glasses, Hench, L.L. and Freiman, S.W., Columbus: AMS, 1972, pp. 91–115.

  5. Yagovkin, V.S., Quartzites and quartz sands. Ural deposits, Gorn. Zh., 1995, no. 8, pp. 69–80.

  6. Geologorazvedka i gornaya promyshlennost’ Buryatii: proshloe, nastoyashchee, budushchee (Exploration and Mining Industry of Buryatia: Past, Present, Future), Bakhtin, V.I, Ed., Ulan-Ude: Buryat. Gos. Univ., 2002.

  7. Nepomnyashchikh, A.I., Krasin, B.A., and Vasil’eva, I.E., Silicon for solar energy, Izv. Tomsk. Politekh. Univ., 2000, vol. 303, no. 1, pp. 176–190.

    Google Scholar 

  8. Petrov, G.N. and Tkacheva, T.M., Semiconductor silicon market: From raw materials to electronic systems, Mater. Elektron. Tekh., 1999, no. 4, pp. 11–15.

  9. Bur'yanov, Yu.I., Borisova, L.A., and Krasil’nikov, P.A., Quartz raw materials are the most important type of mineral resources for high-tech industries, Razved. Okhr. Nedr, 2007, no. 10, pp. 9–12.

  10. Yalovik, L.I. and Tatarinov, A.V., Granulated quartz is a new predictable type of mineral raw material in the Chita region, Izv. Vyssh. Uchebn. Zaved., Geol. Razved., 2005, no. 2, pp. 49–53.

  11. Yasamanov, N.A., To the problem of the mineral resource base of silicon of solar and microelectronic quality, Razved. Okhr. Nedr, 1999, no. 3, pp. 7–8.

  12. Yasamanov, N.A., Raw material base of silicon for the latest technologies, Otech. Geol., 1999, no. 1, pp. 19–24.

  13. Vorob’ev, E.I., Spiridonov, A.M., Nepomnyashchikh, A.I., and Kuz’min, M.I., Superpure quartzites of the Eastern Sayan (Buryat Republic, Russia), Dokl. Earth Sci., 2003, vol. 390, no. 4, pp. 497–500.

    Google Scholar 

  14. Spiridonov, A.M., Vorob’ev, E.I., Nepomnyashchikh, A.I., Roshchektaev, P.A., Khalmatov, K.T., Tsutsar, S.D., Tabinaev, V.P., Fedorov, A.M., and Romanov, V.S., Quartzites of the Bural-Sardag deposit as the largest raw material base of ultrapure quartz materials, in Sbornik tezisov dokladov Soveshchaniya Kremnii-2004 (Proceedings of the Workshop on Silicon-2004), Irkutsk: Inst. Geogr. Sib. Otd. Ross. Akad. Nauk, 2004, p. 32.

  15. Fedorov, A.M. and Budyak, A.E., Non-traditional types of quartz raw materials as a source of expanding the mineral resource base of high-purity quartz in Russia, in Materialy nauchnoi konferentsii molodykh uchenykh INTs SO RAN Sovremennye problemy geokhimii (Proceedings of the Conference of Young Scientists of Irkutsk. Sci. Center of Siberian Branch of RAS on Modern Problems of Geochemistry), Irkutsk: Inst. Geogr. Sib. Otd. Ross. Akad. Nauk, 2004, pp. 44–47.

  16. Fedorov, A.M., Makrygina, V.A., Budyak, A.E., and Nepomnyashchikh, A.I., New data on the geochemistry and mechanism of formation of quartzites of the Bural-Sar’dag deposit (Eastern Sayan mountains), Dokl. Earth Sci., 2012, vol. 442, no. 1, pp. 120–125.

    Article  CAS  Google Scholar 

  17. Anan'eva, L.G., Mineralogical and geochemical study of quartzites of the Antonovskaya group of deposits as a source of high-purity quartz raw materials, Cand. Sci. (Geol.-Mineral.) Dissertation, Tomsk: Tomsk Polytech. Univ., 2007.

  18. Ayurzhanaeva, D.Ts., Comparative analysis of the deposits of silica raw materials Bural-Sardag and Cheremshanskoye, in Minerageniya Severo-Vostochnoi Azii (Minerageny of Northeast Asia), Ulan-Ude: Ekos, 2011.

  19. Bydtaeva, N.G., Kiseleva, R.A., and Mileeva, I.M., Predictive-exploratory models of high-purity quartz deposits, Otech. Geol., 2006, no. 4, pp. 57–63.

  20. Bydtaeva, N.G., Kiseleva, R.A., and Yashin, V.N., Geological features of the formation of a new type of granular quartz in the Gargan quartz-bearing region (Eastern Sayan), in Kvarts. Kremnezem: Materialy Mezhdunarodnogo seminara (Quartz. Silica, Proceedings of the International Seminar), Syktyvkar: Geoprint, 2004, pp. 185–187.

  21. Danilevskaya, L.A., Skamnitskaya, L.S., and Shchiptsov, V.V., Kvartsevoe syr’e Karelii (Quartz Raw Materials of Karelia), Petrozavodsk: Karel. Nauch. Tsentr Ross. Akad. Nauk, 2004.

  22. Danilevskaya, L.A. and Shchiptsov, V.V., Status and resources of the mineral resource base of the Republic of Karelia, Razved. Okhr. Nedr, 2007, no. 10, pp. 29–33.

  23. Turasheva, A.V. and Shatnov, Yu.A., Geological and economic aspects of the development of quartz-bearing regions of Russia for highly pure quartz raw materials, Otech. Geol., 2006, no. 4, pp. 64–66.

  24. Tsarev, D.I., Khrustalev, V.K., Gal’chenko, V.K., and Ayurzhanaeva, D.Ts., Geology and genesis of the Cheremshanka silica deposit, Western Transbaikal region, Russia, Geol. Ore Deposits, 2007, vol. 49, no. 4, pp. 297–307.

    Article  Google Scholar 

  25. Lines, M., High purity quartz supply and demand, Presentation on Indian Minerals and Markets Forum 2019, November 18–20, 2019, Mumbai. http://imformed.com/wp-content/uploads/2019/11/LINES.

  26. Shchiptsov, V.V., Bubnova, T.P., Svetova, E.N., and Skamnitskaya, L.S., Quartz raw materials of the Karelian-Kola region: Major research results, Tr. Karel. Nauch. Tsentra RAN, 2020, no. 10, pp. 5–25.

  27. Svetova, E.N., Bubnova, T.P., and Bukchina, O.V., High-silica rocks of central Karelia—a potential source of quartz raw material, Tr. Karel. Nauch. Tsentra RAN, 2020, no. 6, pp. 106–116.

  28. Galiakhmetova, L.Kh., Bydtaeva, N.G., and Nepryakhin, A.E., Prospects of the Malo-Chipiketsky quartz-bearing zone for quartz raw materials of high quality, Georesursy, 2019, vol. 21, no. 3, pp. 99–106.

    Article  CAS  Google Scholar 

  29. Igumentseva, M.A., Quartz isolatings in the shales and amphibolites of the East-Ufalei zone as a source for the production of high-purity quartz raw materials (Southern Urals), Litosfera, 2019, vol. 19, no. 4, pp. 588–597.

    Google Scholar 

  30. Kabanova, L.Ya., Anfilogov, V.N., and Igumentseva, M.A., results of petrography investigation of quartzites of ridge Alabiya as possible source of quartz raw materials, Razved. Okhr. Nedr, 2017, no. 1, pp. 19–25.

  31. Volkov, P.S., Getting high-purity quartz concentrate out of kyanitic quartzites, Izv. Vyssh. Uchebn. Zaved., Gorn. Zh., 2015, no. 6, pp. 66–72.

  32. Rakov, L.T., Quartz of the Karelia–Kola region as a raw material: On the origins and genetic implications of submicroscopic structural heterogeneities in quartz, Tr. Karel. Nauch. Tsentra RAN, 2015, no. 7, pp. 164–168.

  33. Bydtaeva, N.G., Metasomatic quartzites of the East-Ufaleysky highbar zone—new geological and technological type of high-pure quartz raw materials, Razved. Okhr. Nedr, 2015, no. 4, pp. 34–41.

  34. Nepomnyashchikh, A.I., Shalaev, A.A., Sizova, T.Yu., Sapozhnikov, A.N., and Paklin, A.S., Crystallization of glass produced from Bural-Sardyk quartzite, Geogr. Prir. Resur., 2016, no. 6, pp. 60–64.

  35. Nepomnyashchikh, A.I., Demina, T.V., Zhaboedov, A.P., Eliseev, I.A., Lesnikov, P.A., Lesnikov, A.K., Paklin, A.S., Romanov, V.S., Sapozhnikov, A.N., Sokol’nikova, Yu.V., Fedorov, A.M., Shalaev, A.A., and Shendrik, R.Yu., Optical silica glass based on super quartzites from the Eastern Sayan mountains, Glass Phys. Chem., 2017, vol. 43, no. 3, pp. 222–226.

    Article  CAS  Google Scholar 

  36. Zverev, V.A., Krivopustova, E.V., and Tochilina, T.V., Opticheskie materialy. Chast’ 2. Uchebnoe posobie dlya konstruktorov opticheskikh sistem i priborov (Optic Materials, Part 2, The School-Book), St. Petersburg: Univ. ITMO, 2013.

  37. Boganov, A.G., Popov, S.A., Rudenko, B.C., Cheremisin, I.I, Karasik, A.A., Eliseev, N.P., and Val’tsen, E.G., Installation for fusion and compression of high-purity quartz glass blocks, USSR Inventor’s Certificate 1655917 A1, 1991.

    Google Scholar 

  38. Boganov, A.G., Vil’tsen, E.G., Cheremisin, I.I., Rudenko, V.S., and Eliseev, N.P., Method for producing powdered synthetic silicon dioxide, USSR Inventor’s Certificate 1376488 A1, 1994.

  39. Nasyrov, R.Sh., Bodunov, B.P., Kuz’min, V.G., Sagdeev, K.B., and Tyukhova, G.N., Quartz glass smelting method, RF Patent 2731764, 2020.

  40. Karelin, A.I., Karelin, V.A., Shpunt, L.B., Cheremisin, I.I., and Popov, S.A., Method for producing isotropic optically transparent non-hydroxyl quartz glass, RF Patent 2080308, 1997.

  41. Zhaboedov, A.P., Scientific substantiation and development of technology for processing natural quartzites of the Eastern Sayan on the basis of chemical enrichment, Cand. Sci. (Eng.) Dissertation, Irkutsk: Inst. Geochem., Sib. Branch, Russ. Acad. Sci., 2021.

  42. Pryanishnikov, V.P., Kvartsevoe steklo (Quartz Glass), Moscow: Promstroiizdat, 1956.

  43. Lesnikov, P.A. and Lesnikov, A.K., A device for producing large-sized pipes in a continuous way from mineral or synthetic quartz raw materials, RF Patent  167487, 2016.

  44. Lesnikov, A.K. and Tszjan Mehntsjuan’, Installation for the continuous production of cristobalite, RF Patent 2308416 (2006).

  45. Lesnikov, A.K., Andrianov, V.I., Gromkov, B.K., and Lesnikov, P.A., Melting-forming device for obtaining continuous fibers from glassy materials, RF Patent  74383, 2008.

  46. Pivinskii, Yu.E. and Romashin, A.K., Kvartsevaya keramika (Quartz Ceramics), Moscow: Metallurgiya, 1974.

  47. Pivinskii, Yu.E., Kvartsevaya keramika, VKVS i kerambetony. Istoriya sozdaniya i razvitiya tekhnologii (Quartz Ceramics, HCBS and Kerambetons. History of Creation and Development of Technologies), St. Petersburg: Politekhnika-print, 2018.

  48. Rusin, M.Yu., Proektirovanie golovnykh obtekatelei raket iz keramicheskikh i kompozitsionnykh materialov. Uchebnoe posobie (Design of Rocket Nose Fairings Made of Ceramic and Composite Materials, The School-Book), Moscow: Mosk. Gos. Tech. Univ. im. N. E. Baumana, 2005.

  49. Suzdal'tsev, E.I., Properties of quartz ceramics (review), Ogneupory Tekh. Keram., 2009, nos. 7–8, pp. 21–34.

  50. Karelin, A.I. and Shpunt, L.B., Packaging of high-level waste (HLW) using quartz glass for long-term storage with subsequent disposal, in Radievyi institut im. V.G. Khlopina: K 75-letiyu so dnya osnovaniya (Khlopin Radium Institute, On the Occasion of the 75th Anniversary of its Founding, Collection of Articles), St. Petersburg: Radiev. Inst., 1997, p. 291.

  51. Development of promising opportunities for the use of silicon-containing materials and glass–ceramic products for nuclear energy and environmental protection, in Joint Meeting of the Chemical-Technological Section of the Alexandrov NTS NITI and the Radiation Chemistry Section of the NTS LSC Rodon, May 18, 2002, Protocol, 2002, no. 24/2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. G. Tyurnina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesnikov, A.K., Lesnikov, P.A. & Tyurnina, Z.G. Glass Ceramics Based on Silicon Dioxide as a Promising Material for Use in Nuclear Power Engineering. Glass Phys Chem 48, 285–302 (2022). https://doi.org/10.1134/S1087659622040095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622040095

Keywords:

Navigation