Skip to main content

Cluster Self-Organization of Intermetallic Systems: New Precursor Cluster K65 = 0@3@20@42 for the Self-Assembly of the Sc96Mg8Zn600-cP704 Crystal Structure

Abstract

Using computer methods (the ToposPro software package), a combinatorial topological analysis and modeling of the self-assembly of the Sc96Mg8Zn600-cP704 (sp. gr. Pa-3 (no. 205), a = 22.4120Å, V = 11 257.5 Å3) crystal structure is carried out. A new three-layer framework-forming nanocluster K65 = 0@3@20@42 is established. At the center of nanocluster K65 (in position 8c on the 3 axis), there is a ring of 3 Zn atoms inside the Zn20 dodecahedron, on the surface of which 42 atomic shells of 12 Sc atoms and 30 Zn atoms are formed. The symmetry and topological code of the processes of self-assembly of 3D structures from nanoclusters-precursors K65 in the form primary chain → microlayer → microframework is reconstructed. The K5 = Mg2Zn3 (triangular bipyramids) and K6 = Zn6 (hexagonal rings) clusters are established as spacers occupying the voids in the 3D framework of K65 nanoclusters.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Inorganic Crystal Structure Database (ICSD), Karlsruhe: Fachinformationszentrum; USA: US Natl. Inst. Standard Technol. (NIST).

  2. Villars, P. and Cenzual, K., Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC), Materials Park, OH: ASM Int.

  3. Laube, E. and Nowotny, H., Die kristallarten ScZn und ScCd, Monatsh. Chem., 1963, vol. 94, pp. 132–163.

    Google Scholar 

  4. Liu, X., Rau, F., Breu, J., and Range, K.J., Studies on AB2 - type intermetallic compounds, IV. High pressure synthesis and crystal structure of scandium dizinc ScZn2, J. Alloys Compd., 1996, vol. 243, pp. L5–L7.

    CAS  Article  Google Scholar 

  5. Kripyakevich, P.I., Protasov, V.S., and Kuz’ma, Yu.B., Crystal structure of compounds in the scandium-zinc system, Izv. Akad. Nauk, Neorg. Mater., 1966, pp. 1351–1355.

    Google Scholar 

  6. Lin, Q. and Corbett, J.D., Synthesis and structure of five (Sc3CuyZn18-y)-type compositions (0 < y < 2.2), 1/1 crystalline approximants of a new icosahedral quasicrystal. Direct example of tuning on the basis of size effects and Hume-Rothery concepts, Inorg. Chem., 2004, vol. 43, pp. 1912–1919.

    CAS  Article  Google Scholar 

  7. Andrusyak, R.I., Kotur, B.Ya., and Zavodnik, V.E., The crystal structure of Sc3Zn17, Sov. Phys. Crystallogr., 1989, vol. 34, pp. 600–601.

    Google Scholar 

  8. Schob, O. and Parthe, E., Ab compounds with Sc, Y, and rare earth metals. I. Scandium and yttrium compounds with CrB and CsCl structures, Acta Crystallogr., 1965, vol. 19, pp. 214–224.

    CAS  Article  Google Scholar 

  9. Kalisvaart, P., Latroche, M., Cuevas, F., and Notten, P.H.L., In situ neutron diffraction study on Pd-doped Mg0.65Sc0.35 electrode material, J. Solid State Chem., 2008, vol. 181, pp. 1141–1148.

    CAS  Article  Google Scholar 

  10. Wang, W., Chen, G., Wang, Y., Lin, Q., Mg1-yScyZn2: Limited Sc/Mg alloying between laves phase MgZn2 and ScZn2—what drives ScZn2 into a high-pressure phase?, Eur. J. Inorg. Chem., 2011, vol. 2011, no. 26, pp. 3931–3935.

    CAS  Article  Google Scholar 

  11. Lin, Q. and Corbett, J.D., The 1/1 and 2/1 approximants in the Sc–Mg–Zn quasicrystal system: Tricontahedral clusters as fundamental building blocks, J. Am. Chem. Soc., 2006, vol. 128, pp. 13268–13273.

    CAS  Article  Google Scholar 

  12. Xiong, D.B., Zhao, Y.F., Schnelle, W., Okamoto, N.L., and Inui, H., Complex alloys containing double-Mackay clusters and (Sb1-δZnδ)24. Snub cubes filled with highly disordered zinc aggregates: Synthesis, structures, and physical properties of ruthenium zinc antimonides, Inorg. Chem., 2010, vol. 49, no. 23, pp. 10788–10797.

    CAS  Article  Google Scholar 

  13. Hillebrecht, H., Kuntze, V., and Gebhardt, K., Synthese und Kristallstruktur von Mo7Sn12Zn40 einer Kubischenverbindung mit Ikosaedern aus Ikosaedern, Z. Kristallogr., 1997, vol. 212, no. 12, pp. 840–847.

    CAS  Article  Google Scholar 

  14. Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Applied topological analysis of crystal structures with the program package ToposPro, Cryst. Growth Des., 2014, vol. 14, no. 7, pp. 3576–3585.

    CAS  Article  Google Scholar 

  15. Ilyushin, G.D., Modelirovanie protsessov samoorganizatsii v kristalloobrazuyushchikh sistemakh (Modeling Self-Organization Processes in Crystal-Forming Systems), Moscow: Editorial URSS, 2003.

  16. Ilyushin, G.D., Theory of cluster self-organization of crystal-forming systems. geometrical-topological modeling of nanocluster precursors with a hierarchical structure, Struct. Chem., 2012, vol. 20, no. 6, pp. 975–1043.

    Google Scholar 

  17. Pankova, A.A., Blatov, V.A., Ilyushin, G.D., and Proserpio, D.M., γ-brass polyhedral core in intermetallics: The nanocluster model, Inorg. Chem., 2013, vol. 52, no. 22, pp. 13094–13107.

    CAS  Article  Google Scholar 

  18. Ilyushin, G.D., Intermetallic compounds KnMm (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and topological analysis, cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 7, pp. 1095–1105.

    CAS  Article  Google Scholar 

  19. Ilyushin, G.D., Intermetallic compounds NakMn (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and topological analysis, cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 4, pp. 539–545.

    CAS  Article  Google Scholar 

  20. Ilyushin, G.D., Intermetallic compounds LikMn (M = Ag, Au, Pt, Pd, Ir, Rh): Geometrical and topological analysis, tetrahedral cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 2, pp. 202–210.

    CAS  Article  Google Scholar 

  21. Shevchenko, V.Ya., Medrish, I.V., Ilyushin, G.D., and Blatov, V.A., From clusters to crystals: Scale chemistry of intermetallics, Struct. Chem., 2019, vol. 30, no. 6, pp. 2015–2027.

    CAS  Article  Google Scholar 

  22. Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Cluster self-organization of intermetallic systems: New four-layer cluster precursor K244 = 0@12@20@80@132 and new three-layer cluster precursor K245 = 1@14@48@206 in the Rh140Al403-cP549 and Mn18Pd138Al387-cP549 crystal structures, Glass Phys. Chem., 2021, vol. 47, no. 1, pp. 1–12.

    CAS  Article  Google Scholar 

Download references

Funding

The nanocluster analysis and modeling of the self-assembly of crystalline structures was supported by the Russian Foundation for Basic Research (RFBR no. 19-02-00636) and the Ministry of Education and Science of the Russian Federation as part of a state assignment of the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences, and the topological analysis was carried out with the support of the Ministry of Education and Science of the Russian Federation as part of state assignment no. 0778-2020-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Shevchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.Y., Blatov, V.A. & Ilyushin, G.D. Cluster Self-Organization of Intermetallic Systems: New Precursor Cluster K65 = 0@3@20@42 for the Self-Assembly of the Sc96Mg8Zn600-cP704 Crystal Structure. Glass Phys Chem 48, 94–99 (2022). https://doi.org/10.1134/S1087659622020079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622020079

Keywords:

  • intermetallic compound Sc96Mg8Zn600-cP704
  • nanocluster precursor K65 = 0@3@20@42
  • self-assembly of the crystal structure