Inorganic Crystal Structure Database (ICSD), Karlsruhe: Fachinformationszentrum; USA: US Natl. Inst. Standard Technol. (NIST).
Villars, P. and Cenzual, K., Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC), Materials Park, OH: ASM Int.
Laube, E. and Nowotny, H., Die kristallarten ScZn und ScCd, Monatsh. Chem., 1963, vol. 94, pp. 132–163.
Google Scholar
Liu, X., Rau, F., Breu, J., and Range, K.J., Studies on AB2 - type intermetallic compounds, IV. High pressure synthesis and crystal structure of scandium dizinc ScZn2, J. Alloys Compd., 1996, vol. 243, pp. L5–L7.
CAS
Article
Google Scholar
Kripyakevich, P.I., Protasov, V.S., and Kuz’ma, Yu.B., Crystal structure of compounds in the scandium-zinc system, Izv. Akad. Nauk, Neorg. Mater., 1966, pp. 1351–1355.
Google Scholar
Lin, Q. and Corbett, J.D., Synthesis and structure of five (Sc3CuyZn18-y)-type compositions (0 < y < 2.2), 1/1 crystalline approximants of a new icosahedral quasicrystal. Direct example of tuning on the basis of size effects and Hume-Rothery concepts, Inorg. Chem., 2004, vol. 43, pp. 1912–1919.
CAS
Article
Google Scholar
Andrusyak, R.I., Kotur, B.Ya., and Zavodnik, V.E., The crystal structure of Sc3Zn17, Sov. Phys. Crystallogr., 1989, vol. 34, pp. 600–601.
Google Scholar
Schob, O. and Parthe, E., Ab compounds with Sc, Y, and rare earth metals. I. Scandium and yttrium compounds with CrB and CsCl structures, Acta Crystallogr., 1965, vol. 19, pp. 214–224.
CAS
Article
Google Scholar
Kalisvaart, P., Latroche, M., Cuevas, F., and Notten, P.H.L., In situ neutron diffraction study on Pd-doped Mg0.65Sc0.35 electrode material, J. Solid State Chem., 2008, vol. 181, pp. 1141–1148.
CAS
Article
Google Scholar
Wang, W., Chen, G., Wang, Y., Lin, Q., Mg1-yScyZn2: Limited Sc/Mg alloying between laves phase MgZn2 and ScZn2—what drives ScZn2 into a high-pressure phase?, Eur. J. Inorg. Chem., 2011, vol. 2011, no. 26, pp. 3931–3935.
CAS
Article
Google Scholar
Lin, Q. and Corbett, J.D., The 1/1 and 2/1 approximants in the Sc–Mg–Zn quasicrystal system: Tricontahedral clusters as fundamental building blocks, J. Am. Chem. Soc., 2006, vol. 128, pp. 13268–13273.
CAS
Article
Google Scholar
Xiong, D.B., Zhao, Y.F., Schnelle, W., Okamoto, N.L., and Inui, H., Complex alloys containing double-Mackay clusters and (Sb1-δZnδ)24. Snub cubes filled with highly disordered zinc aggregates: Synthesis, structures, and physical properties of ruthenium zinc antimonides, Inorg. Chem., 2010, vol. 49, no. 23, pp. 10788–10797.
CAS
Article
Google Scholar
Hillebrecht, H., Kuntze, V., and Gebhardt, K., Synthese und Kristallstruktur von Mo7Sn12Zn40 einer Kubischenverbindung mit Ikosaedern aus Ikosaedern, Z. Kristallogr., 1997, vol. 212, no. 12, pp. 840–847.
CAS
Article
Google Scholar
Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Applied topological analysis of crystal structures with the program package ToposPro, Cryst. Growth Des., 2014, vol. 14, no. 7, pp. 3576–3585.
CAS
Article
Google Scholar
Ilyushin, G.D., Modelirovanie protsessov samoorganizatsii v kristalloobrazuyushchikh sistemakh (Modeling Self-Organization Processes in Crystal-Forming Systems), Moscow: Editorial URSS, 2003.
Ilyushin, G.D., Theory of cluster self-organization of crystal-forming systems. geometrical-topological modeling of nanocluster precursors with a hierarchical structure, Struct. Chem., 2012, vol. 20, no. 6, pp. 975–1043.
Google Scholar
Pankova, A.A., Blatov, V.A., Ilyushin, G.D., and Proserpio, D.M., γ-brass polyhedral core in intermetallics: The nanocluster model, Inorg. Chem., 2013, vol. 52, no. 22, pp. 13094–13107.
CAS
Article
Google Scholar
Ilyushin, G.D., Intermetallic compounds KnMm (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and topological analysis, cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 7, pp. 1095–1105.
CAS
Article
Google Scholar
Ilyushin, G.D., Intermetallic compounds NakMn (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and topological analysis, cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 4, pp. 539–545.
CAS
Article
Google Scholar
Ilyushin, G.D., Intermetallic compounds LikMn (M = Ag, Au, Pt, Pd, Ir, Rh): Geometrical and topological analysis, tetrahedral cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 2, pp. 202–210.
CAS
Article
Google Scholar
Shevchenko, V.Ya., Medrish, I.V., Ilyushin, G.D., and Blatov, V.A., From clusters to crystals: Scale chemistry of intermetallics, Struct. Chem., 2019, vol. 30, no. 6, pp. 2015–2027.
CAS
Article
Google Scholar
Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Cluster self-organization of intermetallic systems: New four-layer cluster precursor K244 = 0@12@20@80@132 and new three-layer cluster precursor K245 = 1@14@48@206 in the Rh140Al403-cP549 and Mn18Pd138Al387-cP549 crystal structures, Glass Phys. Chem., 2021, vol. 47, no. 1, pp. 1–12.
CAS
Article
Google Scholar