Skip to main content
Log in

Cluster Self-Organization of Intermetallic Systems: New Four-Layer Clusters K339 = Tb@18@42@86@192 and Three-Layer Clusters K147 = Tb@18@42@86) and K124 = 0@8@26@90 in the Crystal Structure of Tb117Fe52Ge112-cF1124

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Using computer methods (ToposPro software package), a geometric and topological analysis of the crystal structure of the Tb intermetallic compound 117Fe52Ge112-cF1124 with giant cubic cell parameters a = 28.580 Å, V = 23344.61 Å3, etc., is carried out by the group fm-3m. As a result, 575 variants of the cluster representation of the 3D atomic network with the number of structural units ranging from 3 to 8 are established. Two variants of self-assembly of the crystal structure from four-layer precursor clusters K339 = Tb@18(Fe12Ge6)@42(Ge18Tb24)@86(Ge32Tb54)@192(Ge72Fe48Tb72), and two three-layer clusters K147 = Tb@18(Fe12Ge6)@42(Ge18Tb24)@86(Ge32Tb54) and K124 = 0@8Fe@26(Fe8Tb18)@90(Ge42Tb48) are considered. The symmetry and topological code of the processes of self-assembly of 3D structures from new precursor clusters is reconstructed in the form primary chain → layer → framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Inorganic Crystal Structure Database (ICSD), Karlsruhe: Fachinformationszentrum; USA: US Natl. Inst. Standard Technol. (NIST).

  2. Villars, P. and Cenzual, K., Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC), Materials Park, OH: ASM Int.

  3. Samson, S., Crystal structure of NaCd2, Nature (London, U.K.), 1962, vol. 195, no. 4838, pp. 259–262.

    Article  CAS  Google Scholar 

  4. Samson, S., A method for the determination of complex cubic metal structures and its application to the solution of the structure of NaCd2, Acta Crystallogr., 1964, vol. 17, pp. 491–495.

    Article  CAS  Google Scholar 

  5. Samson, S., The crystal structure of the intermetallic compound Cu4Cd3, Acta Crystallogr., 1967, vol. 23, pp. 586–600.

    Article  CAS  Google Scholar 

  6. Samson, S., The crystal structure of the phase β-Mg2Al3, Acta Crystallogr., 1965, vol. 19, pp. 401–413.

    Article  CAS  Google Scholar 

  7. Blatov, V.A., Ilyushin, G.D., and Proserpio, D.M., Nanocluster model of intermetallic compounds with giant unit cells: β, β'-Mg2Al3 polymorphs, Inorg. Chem., 2010, vol. 49, no. 4, pp. 1811–1818.

    Article  CAS  Google Scholar 

  8. Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Intermetallic compounds of the NaCd2 family perceived as assemblies of nanoclusters, Struct. Chem., 2009, vol. 20, no. 6, pp. 975–982.

    Article  CAS  Google Scholar 

  9. Blatov, V.A. and Ilyushin, G.D., New method for computer analysis of complex intermetallic compounds and nanocluster model of the Samson phase Cd3Cu4, Crystallogr. Rep., 2010, vol. 55, no. 7, pp. 1100–1105.

    Article  CAS  Google Scholar 

  10. Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Applied topological analysis of crystal structures with the program package ToposPro, Cryst. Growth Des., 2014, vol. 14, no. 7, pp. 3576–3585.

    Article  CAS  Google Scholar 

  11. Pecharskii, V.L., Bodak, O.I., and Bel’skii, V.K., Crystal structure of Tb117Fe52Ge112, Sov. Phys. Crystallogr., 1987, vol. 32, pp. 194–195.

    Google Scholar 

  12. Fedina, M.F., Bodak, O.I., and Pecharskii, V.K., Interactions in Pr-Co-Ge system, Izv. Akad. Nauk, Neorg. Mater., 1991, vol. 27, pp. 918–920.

    Google Scholar 

  13. Morozkin, A.V., Seropegin, Y.D., Portnoy, V.K., Sviridov, I.A., and Leonov, A.V., New ternary compounds R117Fe52Ge112 (R = Gd, Dy, Ho, Er, Tm) and Sm117Cr52Ge112 of the Tb117Fe52Ge112-type srtucture, Mater. Res. Bull., 1998, vol. 33, no. 6, pp. 903–908.

    Article  CAS  Google Scholar 

  14. Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Cluster self-organization of intermetallic systems: New two-layer nanocluster precursors K64 = 0@8(Sn4Ba4)@56(Na4Sn52) and K47 = Na@Sn16@Na30 in the crystal structure of Na52Ba4Sn80-cF540, Glass Phys. Chem., 2020, vol. 46, pp. 448–454.

    Article  CAS  Google Scholar 

  15. Ilyushin, G.D., Intermetallic compounds KnMm (M = Ag, Au, As, Sb, Bi, Ge, Sn, Pb): Geometrical and topological analysis, cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 7, pp. 1095–1105.

    Article  CAS  Google Scholar 

  16. Ilyushin, G.D., Intermetallic compounds NakMn (M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and topological analysis, cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 4, pp. 539–545.

    Article  CAS  Google Scholar 

  17. Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Cluster self-organization of intermetallic systems: New three-layer cluster precursor K136 = 0@Zn12@32(Mg20Zn12)@92(Zr12Zn80) and a new two-layer cluster precursor K30 = 0@Zn6@Zn24 in the crystal structure of Zr6Mg20Zn128-cP154, Glass Phys. Chem., 2020, vol. 46, no. 6, pp. 455–460.

    Article  CAS  Google Scholar 

  18. Ilyushin, G.D., Intermetallic compounds LikMn (M = Ag, Au, Pt, Pd, Ir, Rh): Geometrical and topological analysis, tetrahedral cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 2, pp. 202–210.

    Article  CAS  Google Scholar 

  19. Ilyushin, G.D., Cluster self-organization of intermetallic systems: 124-atom cluster 0@12@32@80 and 44-atom cluster 0@12@32 for the self-assembly of Li48Na80Ga332-oF920 crystal structure, Crystallogr. Rep., 2019, vol. 64, no. 6, pp. 857–861.

    Article  CAS  Google Scholar 

  20. Ilyushin, G.D., Symmetry and topology code of cluster crystal structure self-assembly for metal oxides: Cs11O3-mP56, Rb(Cs11O3)-oP30, Cs(Cs11O3)-oP60, Rb3(Rb4) Cs11O3)-oP84, (Cs4)(Cs6)(Cs11O3)-hP24, Rb9O2-mP22, (Rb3)(Rb9O2)-hP28, and (Rb2O)3(Rb13)-cF176, Russ. J. Inorg. Chem., 2018, vol. 63, no. 12, pp. 1590–1598.

    Article  CAS  Google Scholar 

Download references

Funding

The nanocluster analysis and modeling of the self-assembly of crystalline structures was supported by the Russian Foundation for Basic Research (RFBR no. 19-02-00636) and the Ministry of Education and Science of the Russian Federation as part of a state task of the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences; and the topological analysis was carried out with the support of the Ministry of Education and Science of the Russian Federation as part of state task no. 0778-2020-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Shevchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.Y., Blatov, V.A. & Ilyushin, G.D. Cluster Self-Organization of Intermetallic Systems: New Four-Layer Clusters K339 = Tb@18@42@86@192 and Three-Layer Clusters K147 = Tb@18@42@86) and K124 = 0@8@26@90 in the Crystal Structure of Tb117Fe52Ge112-cF1124. Glass Phys Chem 48, 85–93 (2022). https://doi.org/10.1134/S1087659622020067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622020067

Keywords:

Navigation