Johansson, M., Zietz, B., Niklasson, G., and Österlund, L., Optical properties of nanocrystalline WO3 and WO3 – x thin films prepared by DC magnetron sputtering, J. Appl. Phys., 2014, vol. 115, no. 21, pp. 1–16.
Article
Google Scholar
Ataallaa, M., Afify, A.S., Hassanc, M., Abdallah, M., Milanova, M., Aboul-Eneinf, H.Y., and Amr, M., Tungsten-based glasses for photochromic, electrochromic, gas sensors, and related applications: A review, J. Non-Cryst. Solids, 2018, vol. 491, no. 1, pp. 43–54.
Article
Google Scholar
Madhavi, V., Kondaiah, P., Hussain, O.M., and Uthanna, S., Structural, optical, and luminescence properties of reactive magnetron sputtered tungsten oxide thin films, Int. Scholarly. Res. Not., 2012, vol. 2012, 801468.
Google Scholar
Belousov, A.L. and Patrusheva, T.N., Electrochromic oxide materials, J. Sib. Fed. Univ. Eng. Technol., 2014, vol. 6, no. 7, pp. 698–710.
Google Scholar
Krysa, J., Zlamal, M., Kment, S., and Hubicka, Z., Photo-electrochemical properties of WO3 and α-Fe2O3 thin films, Chem. Eng. Trans., 2014, vol. 41, pp. 379–384.
Google Scholar
Hammad, A.S., El-Bery, H.M., El-Shazly, A.H., and Elkady, M.F., Effect of WO3 morphological structure on its photoelectrochemical properties, Int. J. Electrochem. Sci., 2018, vol. 13, pp. 362–372.
CAS
Article
Google Scholar
Maiorov, V.A., Window glasses: State and prospects, Opt. Spectrosc., 2018, vol. 124, no. 4, pp. 594–608.
CAS
Article
Google Scholar
Maiorov, V.A., Electrochromic glasses with separate regulation of transmission of visible light and near-infrared radiation (review), Opt. Spectrosc., 2019, vol. 126, no. 4, pp. 412–430.
CAS
Article
Google Scholar
Kanan, S.M., El-Kadri, O.M., Abu-Yousef, I.A., and Kanan, M.C., Semiconducting metal oxide based sensors for selective gas pollutant detection, J. Sens., 2009, vol. 9, pp. 8158–8196.
CAS
Article
Google Scholar
Zhang, H., Wang, Y., Zhu, X., Li, Y., and Cai, W., Bilayer Au nanoparticle-decorated WO3 porous thin films: On-chip fabrication and enhanced NO2 gas sensing performances with high selectivity, Sens. Actuators, B, 2019, vol. 280, pp. 192–200.
CAS
Article
Google Scholar
Mirzaei, A., Kim, J.-H., Kim, H.W., and Kim, S.S., Gasochromic WO3 nanostructures for the detection of hydrogen gas: An overview, Appl. Sci., 2019, vol. 9, pp. 1–21.
Article
Google Scholar
Staerz, A., Somacescu, S., Epifani, M., Russ, T., Weimar, U., and Barsan, N., WO3 based gas sensors, in Proceedings of the Eurosensors 2018, Graz, 2018, vol. 2, pp. 1–4.
Urbańczyk, M., Maciak, E., Gut, K., Pustelny, T., and Jakubik, W., Layered thin film nanostructures of Pd/WO3 – x as resistance gas sensors, Bull. Pol. Acad. Sci.: Tech. Sci., 2011, vol. 59, no. 4, pp. 401–407.
Hua, D., Zhou, Z., Hua, Q., Li, J., Lu, X., Xie, Y., Xiao, H., Li, M., and Yang, J., Transformation of 2-butene into propene on WO3/MCM-48: Metathesis and isomerization of n-butene, Catalysts, 2018, vol. 8, no. 12, pp. 1–11.
Article
Google Scholar
Rumyantseva, M.N., Bulova, M.N., Chareev, D.A., Ryabova, L.I., Akimov, B.A., Arkhangel’skii, I.V., and Gas’kov, A.M., Synthesis and study of nanocomposites based on semiconductor oxides SnO2 and WO3, Vestn. Mosk. Univ., Ser. 2: Khim., 2001, vol. 42, no. 5, pp. 348–355.
CAS
Google Scholar
Yang, X., Wu, N., Miao, Y., and Li, H., Modification effects of B2O3 on the structure and catalytic activity of WO3-UiO-66, Nanomaterials, 2018, vol. 8, pp. 1–17.
Google Scholar
Pašti, I.A., Gavrilov, N.M., and Mentus, S.V., Electrocatalytic behavior of Pt/WO3 composite layers formed potentiodynamically on tungsten surfaces, Int. J. Electrochem. Sci., 2017, vol. 12, pp. 5772–5791.
Article
Google Scholar
Yang, X.-L., Dai, W.-L., Guo, C., Chen, H., Cao, Y., Li, H., He, H., and Fan, K., Synthesis of novel core-shell structured WO3/TiO2 spheroids and its application in the catalytic oxidation of cyclopentene to glutaraldehyde by aqueous H2O2, J. Catal., 2005, vol. 234, pp. 438–450.
CAS
Article
Google Scholar
Bochenkov, V.E. and Sergeev, G.B., Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures, in Metal Oxide Nanoparticles and Their Applications, Umar, A. and Hahn, Y.B, Eds., Am. Sci., 2010, pp. 31–52.
Google Scholar
Rorigues, J.A. and Fernandez-Garcia, M., Synthesis, Properties, and Applications of Oxide Nanomaterials, Hoboken: Wiley, 2007.
Google Scholar
Dey, A., Semiconductor metal oxide gas sensors: A review, Mater. Sci. Eng., A, 2018, vol. 229, pp. 206–217.
CAS
Article
Google Scholar
Gromov, A.A., Kvon, Ya.S., Il’in, A.P., and Vereshchagin, V.I., Specific features of the oxidation of a tungsten nanopowder, Russ. J. Phys. Chem. A, 2004, vol. 78, no. 9, pp. 1484–1487.
Google Scholar
Kolobkova, E.V., Sokhovich, E.V., and Zemko, V.S., The influence of synthesis conditions on structure and thermal properties of electrochromic WO3 films, Izv. St. Petersburg.
Tekhnol. Inst., 2016, vol. 45, no. 19, pp. 3–7.
Google Scholar
Tutov, E.A., Logacheva, V.A., Khoviv, A.M., Tutov, E.E., and Pribytkov, D.M., Study of oxidation of thin tungsten films on silicon, Kondens. Sredy Mezhfaz. Granitsy, 1995, vol. 9, no. 3, pp. 266–271.
Google Scholar
Chenari, H.M., Seibel, C., Hauschild, D., Reinert, F., and Abdollahian, H., Titanium dioxide nanoparticles: Synthesis, X-ray line analysis and chemical composition study, Mater. Res., 2016, vol. 19, no. 6, pp 1319–1323.
CAS
Article
Google Scholar
Li, Z., Yao, Z.J., Haidry, A.A., Plecenik, T., Xie, L.J., Sun, L.C., and Fatima, Q., Resistive-type hydrogen gas sensor based on TiO2: A review, Int. J. Hydrogen Energy, 2018, vol. 43, no. 45, pp. 1–19.
CAS
Article
Google Scholar
Zakrzewska, K. and Radecka, M., TiO2-based nanomaterials for gas sensing-influence of anatase and rutile contributions, Nanoscale Res. Lett., 2017, vol. 89, no. 12, pp. 1–8.
Google Scholar
Sorar, I., Pehlivan, E., Niklasson, G., and Granqvist, C., Electrochromism of DC magnetron sputtered TiO2 thin films: Role of deposition parameters, Sol. Energy Mater. Sol. Cells, 2013, vol. 115, pp. 172–180.
CAS
Article
Google Scholar
Gillaspie, D.T., Tenent, R.C., and Dillon, A.C., Metal-oxide films for electrochromic applications: Present technology and future directions, J. Mater. Chem., 2010, vol. 20, pp. 9585–9592.
CAS
Article
Google Scholar
Raza, M.A., Habib, A., Kanwal, Z., Hussain, S.S., Iqbal, M.J., Saleem, M., Riaz, S., and Naseem, S., Optical CO2 gas sensing based on TiO2 thin films of diverse thickness decorated with silver nanoparticles, Adv. Mater. Sci. Eng., 2018, vol. 2018, 2780203.
Serenko, S.A., Uvarov, N.F., and Gavrilenko, V.A., Synthesis and properties of transparent conducting films of tin dioxide doped with fluorine, Khim. Interesakh. Ustoich. Razvit., 2015, vol. 23, pp. 103–106.
CAS
Google Scholar
Baryshev, M.G, Bolotin, S.N., Petriev, I.S., Frolov, V.Yu., and Dzhimak, S.S., Application of methods of electrothermal and magnetron sputtering to create hydrogen-permeable metal catalysts, Ekol. Vestn. Nauch. Tsentr. ChES, 2014, no. 2, pp. 20–24.
Tomaev, V.V. and Glazov, A.I., Morphology of polycrystalline cassiterite films, Crystallogr. Rep., 2014, vol. 59, no. 5, pp. 749–752.
CAS
Article
Google Scholar
Swanson, H.E. and Tatge, E., Standard X-ray diffraction powder patterns, Natl. Bur. Stand. Circ. (U. S.), 1953, vol. 539, no. 1, pp. 54–55.
Roth, R.S. and Waring, J.L., Phase equilibria as related to crystal structure in the system niobium pentoxide–tungsten trioxide, J. Res. Natl. Bur. Stand., Sect. A, 1966, vol. 70A, pp. 281–303.
CAS
Google Scholar
Huberty, J. and Xu, H., Kinetics study on phase transformation from titania polymorph brookite to rutile, J. Solid State Chem., 2008, vol. 181, pp. 508–514.
CAS
Article
Google Scholar
Batzill, M. and Diebold, U., The surface and materials science of tin oxide, Prog. Surf. Sci., 2005, vol. 79, nos. 2–4, pp. 47–154.
CAS
Article
Google Scholar
Leng, D., Wu, L., Jiang, H., Zhao, Y., Zhang, J., Li, W., and Feng, L., Preparation and properties of SnO2 film deposited by magnetron sputtering, Int. J. Photoenergy, 2012, vol. 2012, 235971.
Article
Google Scholar
Tauc, J., Grigorovici, R., and Vancu, A., Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi B, 1966, vol. 15, p. 627.
CAS
Article
Google Scholar