Skip to main content

Obtaining and Studying Films of Tungsten, Titanium and Their Oxides

Abstract

The initial polycrystalline films of tungsten and titanium, whose surface has predominantly ultrananodispersed morphology and a thickness of 50 to 100 nm, are obtained by magnetron sputtering on conductive fluorinated tin oxide (FTO) films, which were deposited on glass substrates. At the next stage, the resulting films of tungsten and titanium are thermally oxidized in a programmable muffle furnace in an air atmosphere. The morphology, structural, and the optical properties of both the initial tungsten and titanium films and their oxides are studied. Some preliminary results are presented and the prospects for using the obtained tungsten oxide (WO3) and titanium dioxide (TiO2) films as electrochromic, photochromic and sensor materials are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Johansson, M., Zietz, B., Niklasson, G., and Österlund, L., Optical properties of nanocrystalline WO3 and WO3 – x thin films prepared by DC magnetron sputtering, J. Appl. Phys., 2014, vol. 115, no. 21, pp. 1–16.

    Article  Google Scholar 

  2. Ataallaa, M., Afify, A.S., Hassanc, M., Abdallah, M., Milanova, M., Aboul-Eneinf, H.Y., and Amr, M., Tungsten-based glasses for photochromic, electrochromic, gas sensors, and related applications: A review, J. Non-Cryst. Solids, 2018, vol. 491, no. 1, pp. 43–54.

    Article  Google Scholar 

  3. Madhavi, V., Kondaiah, P., Hussain, O.M., and Uthanna, S., Structural, optical, and luminescence properties of reactive magnetron sputtered tungsten oxide thin films, Int. Scholarly. Res. Not., 2012, vol. 2012, 801468.

    Google Scholar 

  4. Belousov, A.L. and Patrusheva, T.N., Electrochromic oxide materials, J. Sib. Fed. Univ. Eng. Technol., 2014, vol. 6, no. 7, pp. 698–710.

    Google Scholar 

  5. Krysa, J., Zlamal, M., Kment, S., and Hubicka, Z., Photo-electrochemical properties of WO3 and α-Fe2O3 thin films, Chem. Eng. Trans., 2014, vol. 41, pp. 379–384.

    Google Scholar 

  6. Hammad, A.S., El-Bery, H.M., El-Shazly, A.H., and Elkady, M.F., Effect of WO3 morphological structure on its photoelectrochemical properties, Int. J. Electrochem. Sci., 2018, vol. 13, pp. 362–372.

    CAS  Article  Google Scholar 

  7. Maiorov, V.A., Window glasses: State and prospects, Opt. Spectrosc., 2018, vol. 124, no. 4, pp. 594–608.

    CAS  Article  Google Scholar 

  8. Maiorov, V.A., Electrochromic glasses with separate regulation of transmission of visible light and near-infrared radiation (review), Opt. Spectrosc., 2019, vol. 126, no. 4, pp. 412–430.

    CAS  Article  Google Scholar 

  9. Kanan, S.M., El-Kadri, O.M., Abu-Yousef, I.A., and Kanan, M.C., Semiconducting metal oxide based sensors for selective gas pollutant detection, J. Sens., 2009, vol. 9, pp. 8158–8196.

    CAS  Article  Google Scholar 

  10. Zhang, H., Wang, Y., Zhu, X., Li, Y., and Cai, W., Bilayer Au nanoparticle-decorated WO3 porous thin films: On-chip fabrication and enhanced NO2 gas sensing performances with high selectivity, Sens. Actuators, B, 2019, vol. 280, pp. 192–200.

    CAS  Article  Google Scholar 

  11. Mirzaei, A., Kim, J.-H., Kim, H.W., and Kim, S.S., Gasochromic WO3 nanostructures for the detection of hydrogen gas: An overview, Appl. Sci., 2019, vol. 9, pp. 1–21.

    Article  Google Scholar 

  12. Staerz, A., Somacescu, S., Epifani, M., Russ, T., Weimar, U., and Barsan, N., WO3 based gas sensors, in Proceedings of the Eurosensors 2018, Graz, 2018, vol. 2, pp. 1–4.

  13. Urbańczyk, M., Maciak, E., Gut, K., Pustelny, T., and Jakubik, W., Layered thin film nanostructures of Pd/WO3 – x as resistance gas sensors, Bull. Pol. Acad. Sci.: Tech. Sci., 2011, vol. 59, no. 4, pp. 401–407.

  14. Hua, D., Zhou, Z., Hua, Q., Li, J., Lu, X., Xie, Y., Xiao, H., Li, M., and Yang, J., Transformation of 2-butene into propene on WO3/MCM-48: Metathesis and isomerization of n-butene, Catalysts, 2018, vol. 8, no. 12, pp. 1–11.

    Article  Google Scholar 

  15. Rumyantseva, M.N., Bulova, M.N., Chareev, D.A., Ryabova, L.I., Akimov, B.A., Arkhangel’skii, I.V., and Gas’kov, A.M., Synthesis and study of nanocomposites based on semiconductor oxides SnO2 and WO3, Vestn. Mosk. Univ., Ser. 2: Khim., 2001, vol. 42, no. 5, pp. 348–355.

    CAS  Google Scholar 

  16. Yang, X., Wu, N., Miao, Y., and Li, H., Modification effects of B2O3 on the structure and catalytic activity of WO3-UiO-66, Nanomaterials, 2018, vol. 8, pp. 1–17.

    Google Scholar 

  17. Pašti, I.A., Gavrilov, N.M., and Mentus, S.V., Electrocatalytic behavior of Pt/WO3 composite layers formed potentiodynamically on tungsten surfaces, Int. J. Electrochem. Sci., 2017, vol. 12, pp. 5772–5791.

    Article  Google Scholar 

  18. Yang, X.-L., Dai, W.-L., Guo, C., Chen, H., Cao, Y., Li, H., He, H., and Fan, K., Synthesis of novel core-shell structured WO3/TiO2 spheroids and its application in the catalytic oxidation of cyclopentene to glutaraldehyde by aqueous H2O2, J. Catal., 2005, vol. 234, pp. 438–450.

    CAS  Article  Google Scholar 

  19. Bochenkov, V.E. and Sergeev, G.B., Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures, in Metal Oxide Nanoparticles and Their Applications, Umar, A. and Hahn, Y.B, Eds., Am. Sci., 2010, pp. 31–52.

    Google Scholar 

  20. Rorigues, J.A. and Fernandez-Garcia, M., Synthesis, Properties, and Applications of Oxide Nanomaterials, Hoboken: Wiley, 2007.

    Google Scholar 

  21. Dey, A., Semiconductor metal oxide gas sensors: A review, Mater. Sci. Eng., A, 2018, vol. 229, pp. 206–217.

    CAS  Article  Google Scholar 

  22. Gromov, A.A., Kvon, Ya.S., Il’in, A.P., and Vereshchagin, V.I., Specific features of the oxidation of a tungsten nanopowder, Russ. J. Phys. Chem. A, 2004, vol. 78, no. 9, pp. 1484–1487.

    Google Scholar 

  23. Kolobkova, E.V., Sokhovich, E.V., and Zemko, V.S., The influence of synthesis conditions on structure and thermal properties of electrochromic WO3 films, Izv. St. Petersburg. Tekhnol. Inst., 2016, vol. 45, no. 19, pp. 3–7.

    Google Scholar 

  24. Tutov, E.A., Logacheva, V.A., Khoviv, A.M., Tutov, E.E., and Pribytkov, D.M., Study of oxidation of thin tungsten films on silicon, Kondens. Sredy Mezhfaz. Granitsy, 1995, vol. 9, no. 3, pp. 266–271.

    Google Scholar 

  25. Chenari, H.M., Seibel, C., Hauschild, D., Reinert, F., and Abdollahian, H., Titanium dioxide nanoparticles: Synthesis, X-ray line analysis and chemical composition study, Mater. Res., 2016, vol. 19, no. 6, pp 1319–1323.

    CAS  Article  Google Scholar 

  26. Li, Z., Yao, Z.J., Haidry, A.A., Plecenik, T., Xie, L.J., Sun, L.C., and Fatima, Q., Resistive-type hydrogen gas sensor based on TiO2: A review, Int. J. Hydrogen Energy, 2018, vol. 43, no. 45, pp. 1–19.

    CAS  Article  Google Scholar 

  27. Zakrzewska, K. and Radecka, M., TiO2-based nanomaterials for gas sensing-influence of anatase and rutile contributions, Nanoscale Res. Lett., 2017, vol. 89, no. 12, pp. 1–8.

    Google Scholar 

  28. Sorar, I., Pehlivan, E., Niklasson, G., and Granqvist, C., Electrochromism of DC magnetron sputtered TiO2 thin films: Role of deposition parameters, Sol. Energy Mater. Sol. Cells, 2013, vol. 115, pp. 172–180.

    CAS  Article  Google Scholar 

  29. Gillaspie, D.T., Tenent, R.C., and Dillon, A.C., Metal-oxide films for electrochromic applications: Present technology and future directions, J. Mater. Chem., 2010, vol. 20, pp. 9585–9592.

    CAS  Article  Google Scholar 

  30. Raza, M.A., Habib, A., Kanwal, Z., Hussain, S.S., Iqbal, M.J., Saleem, M., Riaz, S., and Naseem, S., Optical CO2 gas sensing based on TiO2 thin films of diverse thickness decorated with silver nanoparticles, Adv. Mater. Sci. Eng., 2018, vol. 2018, 2780203.

  31. Serenko, S.A., Uvarov, N.F., and Gavrilenko, V.A., Synthesis and properties of transparent conducting films of tin dioxide doped with fluorine, Khim. Interesakh. Ustoich. Razvit., 2015, vol. 23, pp. 103–106.

    CAS  Google Scholar 

  32. Baryshev, M.G, Bolotin, S.N., Petriev, I.S., Frolov, V.Yu., and Dzhimak, S.S., Application of methods of electrothermal and magnetron sputtering to create hydrogen-permeable metal catalysts, Ekol. Vestn. Nauch. Tsentr. ChES, 2014, no. 2, pp. 20–24.

  33. Tomaev, V.V. and Glazov, A.I., Morphology of polycrystalline cassiterite films, Crystallogr. Rep., 2014, vol. 59, no. 5, pp. 749–752.

    CAS  Article  Google Scholar 

  34. Swanson, H.E. and Tatge, E., Standard X-ray diffraction powder patterns, Natl. Bur. Stand. Circ. (U. S.), 1953, vol. 539, no. 1, pp. 54–55.

  35. Roth, R.S. and Waring, J.L., Phase equilibria as related to crystal structure in the system niobium pentoxide–tungsten trioxide, J. Res. Natl. Bur. Stand., Sect. A, 1966, vol. 70A, pp. 281–303.

    CAS  Google Scholar 

  36. Huberty, J. and Xu, H., Kinetics study on phase transformation from titania polymorph brookite to rutile, J. Solid State Chem., 2008, vol. 181, pp. 508–514.

    CAS  Article  Google Scholar 

  37. Batzill, M. and Diebold, U., The surface and materials science of tin oxide, Prog. Surf. Sci., 2005, vol. 79, nos. 2–4, pp. 47–154.

    CAS  Article  Google Scholar 

  38. Leng, D., Wu, L., Jiang, H., Zhao, Y., Zhang, J., Li, W., and Feng, L., Preparation and properties of SnO2 film deposited by magnetron sputtering, Int. J. Photoenergy, 2012, vol. 2012, 235971.

    Article  Google Scholar 

  39. Tauc, J., Grigorovici, R., and Vancu, A., Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi B, 1966, vol. 15, p. 627.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Tomaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tomaev, V.V., Sokhovich, E.V., Myakin, S.V. et al. Obtaining and Studying Films of Tungsten, Titanium and Their Oxides. Glass Phys Chem 48, 61–68 (2022). https://doi.org/10.1134/S1087659622010151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622010151

Keywords:

  • films of tungsten
  • titanium and their oxides
  • conductive SnO2fluorine-doped (fluorinated tin oxide (FTO)) film
  • electrochromic
  • photochromic
  • and sensor metal oxide materials