Skip to main content

Effect of SiC Fiber Content in Silicon Carbide Material on Its Mechanical Properties

Abstract

SiC materials are obtained by impregnating a porous workpiece consisting of silicon carbide and carbon with liquid silicon. In the composition of the material, at the stage of preparation of charge compositions, up to 18 vol % SiCf is introduced, reinforcing the material and giving it a high level of mechanical characteristics. With an increase in the fiber content (>10 vol % SiCf), the density decreases and the strength of the material decreases; nevertheless, its crack resistance increases. The maximum value of the critical stress intensity factor is recorded for a material containing 15 vol % SiCfK1C = 6.0 ± 0.2 MPa m1/2

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Briggs, J., Engineering ceramics in Europe and the USA: An overview of the markets, in Ceramic Forum International, 2011, vol. 88, E44–E46.

  2. Schmalzried, C., and Schwetz, K.A., Silicon carbide- and boron carbide-based hard materials, in Ceramics Science and Technology, vol. 2: Materials and Properties, Riedel, R. and Chen, I.-W., Eds., New York: Wiley, 2010, chap. 4, pp. 131–227.

  3. Wilhelm, M., Kornfeld, M., and Wruss, W., Development of SiC–Si composites with fine-grained SiC microstructures, J. Eur. Ceram. Soc., 1999, vol. 19, pp. 2155–2163.

    CAS  Article  Google Scholar 

  4. Wilhelm, M., Werdenich, S., and Wruss, W., Influence of resin content and compaction pressure on the mechanical properties of SiC-Si composites with sub-micron SiC microstructures, J. Eur. Ceram. Soc., 2001, vol. 21, pp. 981–990.

    CAS  Article  Google Scholar 

  5. Dongliang, J., The fabrication of reaction-formed silicon carbide with controlled microstructure by infiltrating a pure carbon preform with molten Si, Ceram. Int., 2004, vol. 30, pp. 435–439.

    Article  Google Scholar 

  6. Suyama, S., Kameda, T., and Itoh, Y., Development of high-strength reaction-sintered silicon carbide, Diamond Relat. Mater., 2003, vol. 12, pp. 1201–1204.

    CAS  Article  Google Scholar 

  7. Yanxiang, W., Shouhong, T., and Dongliang, J., The effect of porous carbon preform and the infiltration process on the properties of reaction-formed SiC, Carbon, 2004, vol. 42, pp. 1833–1839.

    Article  Google Scholar 

  8. Muñoz, A., Martínez-Fernández, J., Domínguez-Rodríguez, A., and Singh, M., High-temperature compressive strength of reaction-formed silicon carbide ceramics, J. Eur. Ceram. Soc., 1998, vol. 18, pp. 65–68.

    Article  Google Scholar 

  9. Lim, C.B. and Iseki, T., Transport of fine-grained b-SiC in SiC liquid Si system, Adv. Ceram. Mater., 1988, vol. 3, pp. 291–293.

    CAS  Article  Google Scholar 

  10. Herrmann, M., Sempf, K., Kremmer, K., Schneider, M., and Michaelis, A., Electrochemical corrosion of silicon-infiltrated silicon carbide ceramics in aqueous solutions, Ceram. Int., 2015, vol. 41, pp. 4422–4429.

    CAS  Article  Google Scholar 

  11. Zollfrank, C. and Sieber, H., Microstructure evolution and reaction mechanism of biomorphic Si–SiC ceramics, J. Am. Ceram. Soc., 2005, vol. 88, pp. 51–58.

    CAS  Article  Google Scholar 

  12. Fu, Z., Schlier, L., Travitzky, N., and Greil, P., Three-dimensional printing of SiSiC lattice truss structures, Mater. Sci. Eng., A, 2013, vol. 560, pp. 851–856.

    CAS  Article  Google Scholar 

  13. Lenk, R., Kriwoschepov, A.F., and Grosse, K., Hot-casting of pressureless-sintered silicon carbide: Preparation of the casting slip, Sprechsaal, 1995, vol. 128, pp. 17–20.

    CAS  Google Scholar 

  14. Chou, Y.S. and Green, D.J., Silicon carbide platelet/alumina composites (I): Effect of forming technique on platelet orientation, J. Am. Ceram. Soc., 1992, vol. 75, pp. 3346–3352.

    CAS  Article  Google Scholar 

  15. Chou, Y.S. and Green, D.J., Silicon carbide platelet/alumina composites (II): Mechanical properties, J. Am. Ceram. Soc., 1993, vol. 76, pp. 1452–1458.

    CAS  Article  Google Scholar 

  16. Chou, Y.S. and Green, D.J., Silicon carbide platelet/alumina composites (III): Toughening mechanisms, J. Am. Ceram. Soc., 1993, vol. 76, pp. 1985–1992.

    CAS  Article  Google Scholar 

  17. Perevislov, S.N., Afanas’eva, L.E., and Baklanova, N.I., Mechanical properties of SiC-fiber-reinforced reaction-bonded silicon carbide, Inorg. Mater., 2020, vol. 56, no. 4, pp. 425–429.

    Article  Google Scholar 

  18. Aroati, S., Cafri, M., Dilman, H., Dariel, M.P., and Frage, N., Preparation of reaction bonded silicon carbide (RBSC) using boron carbide as an alternative source of carbon, J. Eur. Ceram. Soc., 2011, vol. 31, pp. 841–845.

    CAS  Article  Google Scholar 

  19. Apukhtina, T.L., Shcherbakova, G.I., Sidorov, D.V., Varfolomeev, M.S., Sidorov, D.G., and Drachev, A.I., Reinforcing silicon carbide fibers with protective glass-ceramic coatings, Inorg. Mater., 2015, vol. 51, pp. 806–810.

    CAS  Article  Google Scholar 

  20. Hayun, S., Paris, V., Mitrani, R., Kalabukhov, S., Dariel, M.P., Zaretsky, E., and Frage, N., Microstructure and mechanical properties of silicon carbide processed by spark plasma sintering (SPS), Ceram. Int., 2012, vol. 38, pp. 6335–6340.

    CAS  Article  Google Scholar 

  21. Kim, S.H., Kim, Y.W., and Mitomo, M., Microstructure and fracture toughness of liquid-phase-sintered β-SiC containing β-SiC whiskers as seeds, J. Mater. Sci., 2003, vol. 38, pp. 1117–1121.

    CAS  Article  Google Scholar 

  22. Perevislov, S.N., Sintering behavior and properties of reaction-bonded silicon nitride, Russ. J. Appl. Chem., 2021, vol. 94, no. 2, pp. 143–151.

    CAS  Article  Google Scholar 

  23. Nesmelov, D.D. and Perevislov, S.N., Reaction sintered materials based on boron carbide and silicon carbide, Glass Ceram., 2015, vol. 71, nos. 9–10, pp. 313–319.

    CAS  Article  Google Scholar 

  24. Perevislov, S.N., Shcherbak, V., and Tomkovich, M.V., Phase composition and microstructure of reaction-bonded boron-carbide materials, Refract. Ind. Ceram., 2018, vol. 59, no. 2, pp. 179–183.

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was partially performed using the equipment of the Engineering Center of the St. Petersburg State Technical Institute (Technical University).

Funding

This study was supported through a grant of the Russian Foundation for Basic Research as part of scientific project no. 18-29-17013/20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Perevislov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perevislov, S.N., Apukhtina, T.L., Lysenkov, A.S. et al. Effect of SiC Fiber Content in Silicon Carbide Material on Its Mechanical Properties. Glass Phys Chem 48, 54–60 (2022). https://doi.org/10.1134/S1087659622010102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622010102

Keywords:

  • silicon carbide
  • fibers
  • reinforcement
  • mechanical characteristics
  • crack resistance