Skip to main content

Crack-Tip Shielding by Swelling in Silica Proved from Measurement of Crack-Terminating Angles in DCDC-Tests

Abstract

Cracks terminating at free surfaces are affected by local stresses in the surface region. Under residual compression, the crack front must retard, whereas residual tensile stresses lead to an advance, both compared with the crack contour in the absence of stresses. This effect can be used for an estimation of residual surface stresses in silica generated during the silica/water reaction and caused by volume swelling. A strong shielding stress intensity factor of about –2.5 MPa√m was found for Double Cleavage Drilled Compression specimens heat-treated for 192 h at 250°C in water vapour under saturation pressure and in liquid water. This result is a clear indication for compressive stresses developing in the water diffusion zone at the surface.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Schell, K.G., Wagner, S., Hettich, P., Fett, T., Rizzi, G., and Hoffmann, M.J., Identification of residual stress layers at glass surfaces via crack terminating angles, J. Am. Ceram. Soc., 2017, vol. 100, pp. 4173–4179.

    CAS  Article  Google Scholar 

  2. Haranoh, T., Ishikawa, H., Shinkai, N., and Mizuhashi, M., Crack evolution in vickers indentation for soda-lime-silica glass, J. Mater. Sci., 1982, vol. 17, pp. 1493–1500.

    CAS  Article  Google Scholar 

  3. Lanford, W.A., Davis, K., Lamarche, P., Laursen, T., Groleau, R., and Doremus, R.H., Hydration of soda-lime glass, J. Non-Cryst. Solids, 1979, vol. 33, pp. 249–266.

    CAS  Article  Google Scholar 

  4. Fett, T., Guin, J.P., and Wiederhorn, S.M., Stresses in ion-exchange layers of soda-lime-silicate glass, Fatigue Fract. Eng. Mater. Struct., 2005, vol. 28, pp. 507–514.

    CAS  Article  Google Scholar 

  5. Brückner, R., The structure-modifying influence of the hydroxyl content of vitreous silica, Glastech. Ber., 1970, vol. 43, pp. 8–12.

    Google Scholar 

  6. Brüuckner, R., Metastable equilibrium density of hydroxyl-free synthetic vitreous silica, J. Non-Cryst. Solids, 1971, vol. 5, pp. 281–285.

    Article  Google Scholar 

  7. Shackelford, J.F., Masaryk, J.S., and Fulrath, R.M., Water content, fictive temperature, and density relations for fused silica, J. Am. Ceram. Soc., 1970, vol. 53, p. 417.

    CAS  Article  Google Scholar 

  8. Shelby, J.E., Density of vitreous silica, J. Non-Cryst. Solids, 2004, vol. 349, pp. 331–336.

    CAS  Article  Google Scholar 

  9. Wiederhorn, S.M., Yi, F., la Van, D., Richter, L.J., Fett, T., and Hoffmann, M.J., Volume expansion caused by water penetration into silica glass, J. Am. Ceram. Soc., 2015, vol. 98, pp. 78–87.

    CAS  Article  Google Scholar 

  10. Wiederhorn, S.M. and Bolz, L.H., Stress corrosion and static fatigue of glass, J. Am. Ceram. Soc., 1970, vol. 53, pp. 543–548.

    CAS  Article  Google Scholar 

  11. Michalske, T.A., Smith, W.L., and Bunker, B.C., Fatigue mechanisms in high-strength silica-glass fibers, J. Am. Ceram. Soc., 1991, vol. 74, pp. 1993–1996.

    CAS  Article  Google Scholar 

  12. Sglavo, V.M. and Green, D.J., Fatigue limit in fused silica, J. Eur. Ceram. Soc., 2001, vol. 21, pp. 561–567.

    CAS  Article  Google Scholar 

  13. Muraoka, M. and Abé, H., Subcritical crack growth in silica optical fibers in wide range of crack velocities, J. Am. Ceram. Soc., 1996, vol. 79, pp. 51–57.

    CAS  Article  Google Scholar 

  14. Dimitrov, A., Schnack, E., Buchholz, F.-G., 3D-Corner effects in crack propagation, in On-line Proceedings of the 5th World Congress in Computational Mechanics (WCCMV), Mang, H.A., Rammerstorfer, F.G., and Eberhardsteiner, J., Eds., Vienna, 2002.

  15. Dimitrov, A., Eckensingularitaten bei räumlichen Problemen der Elastizitatstheorie: Numerische Berechnung und Anwendungen, Dissertation, Karlsruhe: Inst. Eng. Mech., Karlsruhe Inst. Technol., 2002.

  16. Fenner, D.N. and Abdul Mihsein, M.J., Crack front elastic stress state for three-dimensional crack problems, Int. J. Fract., 1984, vol. 25, pp. 121–131.

    Article  Google Scholar 

  17. Wiederhorn, S.M., Fracture surface energy of glass, J. Am. Ceram. Soc., 1969, vol. 52, pp. 99–105.

    CAS  Article  Google Scholar 

  18. Wiederhorn, S.M., Fett, T., Rizzi, G., Funfschilling, S., Hoffmann, M.J., and Guin, J.-P., Effect of water penetration on the strength and toughness of silica glass, J. Am. Ceram. Soc., 2011, vol. 94, pp. 196–203.

    Article  Google Scholar 

  19. Fett, T., Rizzi, G., Hoffmann, M.J., Wagner, S., and Wiederhorn, S.M., Effect of water on the inert strength of silica glass: Role of water penetration, J. Am. Ceram. Soc., 2012, vol. 95, pp. 3847–3853.

    CAS  Article  Google Scholar 

  20. Zouine, A., Dersch, O., Walter, G., and Rauch, F., Diffusivity and solubility of water in silica glass in the temperature range 23–200°C, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B, 2007, vol. 48, pp. 85–91.

  21. Janssen, C., Specimen for fracture mechanics studies on glass, in Proceedings of the 10th International Congress on Glass, Kyoto: Ceram. Soc. Japan, 1974, pp. 23–30.

  22. Underwood, J., Stress intensity factors for internally pressurized thick-wall cylinders, in Stress Analysis and Growth of Cracks, Proceedings of the 1971 National Symposium on Fracture Mechanics, Corten, H. and Gallagher, J., Eds., West Conshohocken, PA: ASTM Int., 1972, Part 1, pp. 59–70

  23. Hettich, P., Schell, K.G., Rizzi, G., Wagner, S., and Fett, T., Estimation of swelling stresses from crack-terminating angles, KIT Sci. Work. Pap., 2019, vol. 119, pp. 1–9.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Schell.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hettich, P., Schell, K.G., Bucharsky, E.C. et al. Crack-Tip Shielding by Swelling in Silica Proved from Measurement of Crack-Terminating Angles in DCDC-Tests. Glass Phys Chem 48, 30–34 (2022). https://doi.org/10.1134/S1087659622010060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622010060

Keywords:

  • residual surface stresses
  • shielding stress intensity
  • crack-terminating angles