Skip to main content

X-Ray Fluorescence Determination of the Boron Content in Lithium Borate Glasses


A method for the X-ray fluorescence determination of the boron content in lithium borates used for preparing glasses for detecting ionizing radiation is proposed. The measurements are carried out on an S8 Tiger X-ray spectrometer. Sample preparation consists of fusing lithium borates (7.5 g) with a rock sample (0.5 g) and forming a glass disk. The error estimate for boron is 0.2 wt % with the boron content in the range from 21.7 to 27.2 wt % corresponding to the range of content in stoichiometric lithium borates from metaborate to triborate.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.


  1. Vereshchagina, N.Yu., Danilkin, M.I., and Spasskii, D.A., Struktura tsentrov svecheniya i zakhvata v legirovannom tetraborate litiya (Structure of Luminescence and Trapping Centers in Doped Lithium Tetraborate), Moscow: Ross. Akad. Nauk, 2017.

  2. Ardiçoğlu, B., Özbayoğlu, G., Özdemir, Z., and Yilmaz, A., Production and identification of rare-earth doped lithium triborate, J. Alloys Compd., 2006, vol. 418, nos. 1–2, pp. 77–79.

    Article  Google Scholar 

  3. Auxier II, J.D., The development of lithium tetraborate compounds for thermal neutron detection, PhD Dissertation, Knoxville, TN: Univ. Tennessee, 2013.

  4. Wantana, N., Kaewnuam, E., Ruangtaweep, Y., Kidkhunthod, P., Kim, H.J., Kothan, S., and Kaewkhao, J., High density tungsten gadolinium borate glasses doped with Eu3+ ion for photonic and scintillator applications, Radiat. Phys. Chem., 2020, vol. 172, pp. 1–6.

    Article  Google Scholar 

  5. Rittisut, W., Wantana, N., Butburee, A., Ruangtaweep, Y., Padchasri, J., Rujirawat, S., Manyum, P., Kidkhunthod, P., Yimnirun, R., Kothan, S., Kim, H.J., Prasatkhetragarn, A., and Kaewkhao, J., Luminescence properties of Ce3+-doped borate scintillating glass for new radiation detection material, Radiat. Phys. Chem., 2021, vol. 185, pp. 1–9.

    Article  Google Scholar 

  6. Glaze, F.W. and Finn, A.N., Routine determination of boron in glass, J. Res. Natl. Bur. Stand., 1936, vol. 16, pp. 421–429.

    Article  Google Scholar 

  7. Nemodruk, A.A. and Karalova, Z.K., Analiticheskaya khimiya bora (Analytic Chemistry of Boron), Moscow: Nauka, 1964.

  8. Venkatesh, K., Chhillar, S., Kamble, G.S., Pandey, S.P., Venkatesh, M., Kumar, S.A., Kumar, S., Acharya, R., Pujari, P.K., and Reddy, A.V.R., Determination of boron concentration in borosilicate glass, boron carbide and graphite samples by conventional wet-chemical and nuclear analytical methods, J. Radioanal. Nucl. Chem., 2014, vol. 302, pp. 1425–1428.

    CAS  Article  Google Scholar 

  9. Schuster, M., Müller, L., Mauser, K.E., and Straub, R., Quantitative X-ray fluorescence analysis of boron in thin films of borophosphosilicate glasses, Thin Solid Films, 1988, vol. 157, pp. 325–336.

    CAS  Article  Google Scholar 

  10. Van Sprang, H.A. and Bekkers, M.H.J., Determination of light elements using X-ray spectrometry. Part II: Boron in glass, X-Ray Spectrom., 1998, vol. 27, pp. 37–42.

    CAS  Article  Google Scholar 

  11. Sánchez-Ramos, S., Bosch-Reig, F., Gimeno-Adelantado, J.V., Yusá-Marco, D.J., Doménech-Carbó, A., and Berja-Pérez, J.A., Validation of a method for the determination of boron in ceramic materials by X-ray fluorescence spectrometry, Spectrochim. Acta, Part B, 2000, vol. 55, pp. 1669–1677.

    Article  Google Scholar 

  12. Kikongi, P., Salvas, J., and Gosselin, R., Curve-fitting regression: Improving light element quantification with XRF, X-Ray Spectrom., 2017, vol. 46, no. 5, pp. 347–355.

    CAS  Article  Google Scholar 

  13. Shardakov, N.T., Shavkunova, A.E., and Stepanovskikh, V.V., X-ray fluorescence analysis of lithium borate glass Li2O·2B2O3:MxOy (M = Al, Si, Ti, V, Mn, Fe), Glass Phys. Chem., 2017, vol. 43, no. 1, pp. 23–27.

    CAS  Article  Google Scholar 

  14. Revenko, A.G., Estimation and account for matrix effects in studying glass materials of cultural heritage by X-ray spectral analysis, X-Ray Spectrom., 2010, vol. 39, pp. 63–69.

    CAS  Article  Google Scholar 

  15. Van Sprang, H.A. and Bekkers, M.H.J., Determination of light elements using X-ray spectrometry. Part I: Analytical implications of using scattered tube lines, X-Ray Spectrom., 1998, vol. 27, pp. 31–36.

    CAS  Article  Google Scholar 

  16. Finkel’shtein, A.L., Dergin, A.A., Nepomnyashchikh, A.I., and Konovalova, A.V., Lithium and boron oxides ratio determination in lithium borates using the X-ray tube scattered radiation measurements with X‑ray fluorescence spectrometer, Anal. Kontrol’, 2020, vol. 24, no. 1, pp. 15–20.

    Google Scholar 

  17. Amosova, A.A., Panteeva, S.V., Tatarinov, V.V., Chubarov, V.M., and Finkel’shtein, A.L., X-ray fluorescence determination of major rock forming elements in small samples 50 and 110 mg, Anal. Kontrol’, 2015, vol. 19, no. 2, pp. 130–138.

    Google Scholar 

Download references


The work was performed using the equipment of the Center for Collective Use “Isotope-Geochemical Research” of the Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, and the Center for Collective Use “Geodynamics and Geochronology” of the Institute of the Earth’s Crust, Siberian Branch, Russian Academy of Sciences.


The study was carried out as part of a state assignment for project no. 0284-2021-0005 “Development of Methods for Studying the Chemical Composition and Structural State of Natural and Technogenic Environments in the Earth Sciences” and no. 0284-2021-0004 “Materials and Technologies for the Development of Radiation Detectors, Phosphors, and Optical Glasses.”

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. L. Finkelshtein.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Finkelshtein, A.L., Dergin, A.A., Nepomnyashchikh, A.I. et al. X-Ray Fluorescence Determination of the Boron Content in Lithium Borate Glasses. Glass Phys Chem 48, 6–9 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • X-ray fluorescence analysis
  • lithium borates
  • boron determination