Skip to main content
Log in

Chemical Mass Transfer of Indium Oxide and In2O3−MexOy Complex Systems

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

An extensive study of the chemical mass transfer of indium oxide and In2O3−MexOy systems is performed. The efficiency of C, CO, H2, Se2, S2, In2S, In2Se, HI, HBr, HCl, InI3, InBr3, InCl3, I2, Br2 and Cl2 as transport agents for the growth of In2O3 crystals by means of the chemical vapor transport (CVT) in the sealed growth chambers is estimated. The CVT system composition and mass transfer are evaluated in the wide temperature range (627−1227°С). It is shown that among the examined substances, Cl2 is the optimal transport agent for the growth of In2O3 crystals with a minimum growth nucleus density. The compositions of MexOy−In2O3−Cl2 CVT systems were calculated for oxides (MexOy) of all non-radioactive metals of the periodic table, taking into account various types of chloride species. The effect of temperature (627−1227°С) on the total pressure and mass transfer rate of doping species (MeCln) were investigated. Doping of In2O3 by some metal oxides was predicted to be promising and some calculation results are confirmed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Fornari, R., Single Crystals of Electronic Materials, London: Woodhead, 2019.

    Google Scholar 

  2. Hagleitner, D.R., Menhart, M., Jacobson, P., Blomberg, S., Schulte, K., Lundgren, E., Kubicek, M., Fleig, J., Kubel, F., Puls, C., Limbeck, A., Hutter, H., Boatner, L.A., Schmid, M., and Diebold, U., Bulk and surface characterization of In2O3(001) single crystals, Phys. Rev. B, 2012, vol. 85, 115441.

    Article  Google Scholar 

  3. Shimada, S., Sato, O., Tsunashima, A., Kodaira, K., and Matsushita, T., Crystallization of In2O3 by vapor reaction, J. Cryst. Growth, 1987, vol. 80, pp. 366–370.

    Article  CAS  Google Scholar 

  4. Shimada, S. and Mackenzie, K.J.D., A novel method for crystal growth of indium oxide, In2O3, from the vapour phase, J. Cryst. Growth, 1981, vol. 55, pp. 453–456.

    Article  CAS  Google Scholar 

  5. Jozefowicz, M. and Piekarczyk, W., Preparation of In2O3 single crystals by chemical vapour transport method, Mater. Res. Bull., 1987, vol. 22, pp. 775–780.

    Article  CAS  Google Scholar 

  6. De Wit, J.H.W., Preparation of In2O3 single-crystals via chemical transport reaction, J. Cryst. Growth, 1972, vol. 12, pp. 183–184.

    Article  CAS  Google Scholar 

  7. Scherer, V., Janowitz, C., Krapf, A., Dwelk, H., Braun, D., and Manzke, R., Transport and angular resolved photoemission measurements of the electronic properties of In2O3 bulk single crystals, Appl. Phys. Lett., 2012, vol. 100, p. 212108.

    Article  Google Scholar 

  8. Galazka, Z., Uecker, R., and Fornari, R., A novel crystal growth technique from the melt: Levita-tion-assisted self-seeding crystal growth method, J. Cryst. Growth, 2014, vol. 388, pp. 61–69.

    Article  CAS  Google Scholar 

  9. Binnewies, M., Glaum, R., Schmidt, M., and Schmidt, P., Chemical Vapor Transport Reactions, Berlin: De Gruyter, 2012.

    Book  Google Scholar 

  10. Bielz, T., Lorenz, H., Jochum, W., Kaindl, R., Klauser, F., Klotzer, B., and Penner, S., Hydrogen on In2O3: Reducibility, bonding, defect formation, and reactivity, J. Phys. Chem. C, 2010, vol. 114, pp. 9022–9029.

    Article  CAS  Google Scholar 

  11. Wang, Ch.Y., Becker, R.W., Passow, T., et al., Photon stimulated sensor based on indium oxide nanoparticles I: Wide-concentration-range ozone monitoring in air, Sens. Actuators, B, 2011, vol. 152, pp. 235–240.

    Article  CAS  Google Scholar 

  12. Bierwagen, O., Indium oxide – a transparent, wide-band gap semiconductor for (opto)electronic applications, Semicond. Sci. Technol., 2015, vol. 30, 024001.

    Article  CAS  Google Scholar 

  13. Colibaba, G.V., Monaico, E.V., Goncearenco, E., Inculet, I., and Tiginyanu, I.M., Features of nano-templates manufacturing on the II-VI compound substrates, IFMBE Proc., 2016, vol. 55, pp. 188–191.

    Article  Google Scholar 

  14. Colibaba, G.V., Sintering highly conductive ZnO:HCl ceramics by means of chemical vapor transport reactions, Ceram. Int., 2019, vol. 45, pp. 15843–15848.

    Article  Google Scholar 

  15. Colibaba, G.V., Rusnac, D., Fedorov, V., Petrenko, P., and Monaico, E.V., Low-temperature sintering of highly conductive ZnO:Ga:Cl ceramics by means of chemical vapor transport, J. Eur. Ceram. Soc., 2021, vol. 41, pp. 443–450.

    Article  CAS  Google Scholar 

  16. Daniels, F. and Alberty, R.A., Physical Chemistry, New York: Wiley, 1961.

    Google Scholar 

  17. Colibaba, G.V., Halide-hydrogen vapor transport for growth of ZnO single crystals with con-trollable electrical parameters, Mater. Sci. Semicond. Process., 2016, vol. 43, pp. 75–81.

    Article  CAS  Google Scholar 

  18. Colibaba, G.V., Halide-oxide carbon vapor transport of ZnO: Novel approach for unseeded growth of single crystals with controllable growth direction, J. Phys. Chem. Solids, 2018, vol. 116, pp. 58–65.

    Article  CAS  Google Scholar 

  19. Colibaba, G.V., Halide-carbon vapor transport of ZnO and its application perspectives for doping with multivalent metals, J. Solid State Chem., 2018, vol. 266, pp. 166–173.

    Article  CAS  Google Scholar 

  20. Colibaba, G.V., Monaico, E.V., Goncearenco, E.P., Nedeoglo, D.D., Tiginyanu, I.M., and Nielsch, K., Growth of ZnCdS single crystals and prospects of their application as nanoporous structures, Semicond. Sci. Technol., 2014, vol. 29, 125003.

    Article  Google Scholar 

  21. Colibaba, G.V., ZnO:HCl single crystals: Thermodynamic analysis of CVT system, feature of growth and characterization, Solid State Sci., 2016, vol. 56, pp. 1–9.

    Article  CAS  Google Scholar 

  22. Glushko, V.P., Termodinamicheskie svoistva individual’nykh veshchestv (Thermodynamic Properties of Individual Substances), Moscow: Nauka, 1978.

  23. Lidin, R.A., Konstanty neorganicheskikh veshchestv (Constants of Inorganic Substances), Moscow: Drofa, 2008.

  24. Colibaba, G.V., ZnO doping efficiency by multivalent metals in complex CVT reactions, Solid State Sci., 2019, vol. 97, 105944.

    Article  CAS  Google Scholar 

  25. Mikami, M., Sato, T., Wang, J., Masa, Y., and Isshiki, M., Improved reproducibility in zinc oxide single crystal growth using chemical vapor transport, J. Cryst. Growth, 2006, vol. 286, pp. 213–217.

    Article  CAS  Google Scholar 

  26. Gilliland, E.R., Diffusion coefficients in gaseous systems, Ind. Eng. Chem., 1934, vol. 26, p. 681.

    Article  CAS  Google Scholar 

  27. Glushko, V.P., Termicheskie konstanty veshchestv (Thermal Constants of Substances), Moscow: Nauka, 1982.

  28. Chervonnyi, A.D., Thermodynamic properties of lanthanide fluorides and chlorides in the gaseous and condensed states, in Handbook on the Physics and Chemistry of Rare Earths, Amsterdam: Elsevier, 2012, vol. 42, Chap. 253.

    Google Scholar 

  29. Rabinovich, V.A. and Havin, Z.Y., Kratkii khimicheskii spravochnik (Brief Chemical Handbook), Leningrad: Khimiya, 1978.

  30. Lidin, R.A., Khimicheskie svoistva neorganicheskikh veshchestv (Chemical Properties of Inorganic Substances), Moscow: Khimiya, 2000.

Download references

ACKNOWLEDGMENTS

The author wishes to thank Dr. E. Monaico (Technical University of Moldova) and N. Costriucova (Institute of Applied Physics, Moldova) for EDX and XRD measurement.

Funding

This work was supported by the Ministry of Education, Culture and Research of Moldova under the project no. 20.80009.5007.16 (Photosensitizers for applications in pharmaceutical medicine and photovoltaics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Colibaba.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colibaba, G.V. Chemical Mass Transfer of Indium Oxide and In2O3−MexOy Complex Systems. Glass Phys Chem 48, 547–557 (2022). https://doi.org/10.1134/S1087659621100448

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659621100448

Keywords:

Navigation