Skip to main content
Log in

Prediction of the Liquidus of the Quaternary System of Titanium, Aluminum, Silicon, and Zirconium Oxides

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The aim of this article is to predict possible invariant reactions in a quaternary system formed by oxides of titanium, aluminum, silicon, and zirconium. As a result, based on the data on invariant transformations in faceting ternary systems, a scheme of phase reactions with the participation of a liquid is derived, and then the contours of the liquidus hypersurfaces are described for basic invariant points belonging to binary and ternary systems, as well as the six obtained points of the quaternary system: two are peritectic, two are eutectic, and two are intermediate, corresponding to phase reactions of two variants of the peritectic type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Pena, P., Relaciones de fases en sistemas de óxidos refractarios de interés tecnológico, sistema ZrO2–Al2O3–SiO2–TiO2, PhD Thesis, Madrid: Univ. Complutense of Madrid, 1979.

  2. Wohlfromm, H., Moya, J.S., and Pena, P., Effect of ZrSiO4 and MgO Additions on reaction sintering and properties of Al2TiO5-based materials, J. Mater. Sci., 1990, vol. 25, pp. 3753–3764.

    Article  CAS  Google Scholar 

  3. Lutsyk, V., Zelenaya, A., Zyryanov, A., and Nasrulin, E., Computer models of phase diagrams for ceramic systems TiO2–SiO2–Al2O3 and ZrO2–SiO2–Al2O3, J. Silicate Based Compos. Mater., 2016, vol. 68, pp. 52–55.

    Google Scholar 

  4. Vorob’eva, V.P., Zelenaya, A.E., and Lutsyk, V.I., Using a 3D computer model of the T–x–y diagram of the ZrO2–SiO2–Al2O3 system to resolve contradictions in the initial experimental data, Russ. J. Inorg. Chem., 2021, vol. 66, no. 6, pp. 894–901.

    Article  Google Scholar 

  5. Bakardjieva, S., Barrachin, M., Bechta, S., Bottomley, D., Brissoneau, L., Cheynet, B., Fischer, E., Journeau, C., Kiselova, M., Mezentseva, L., Piluso, P., and Wiss, T., Improvement of the european thermodynamic database NUCLEA, Prog. Nucl. Energy, 2010, vol. 52, no. 1, pp. 84–96.

    Article  CAS  Google Scholar 

  6. Vorozhtcov, V.A., Yurchenko, D.A., Almjashev, V.I., and Stolyarova, V.L., Phase equilibriums in the Al2O3–SiO2–ZrO2 system: calculation and experiment, Glass Phys. Chem., 2021, vol. 47, no. 5, pp. 417–426.

    Article  CAS  Google Scholar 

  7. Lutsyk, V.I., Zelenaya, A.E., and Zyryanov, A.M., Multicomponent systems simulation by the software of “diagrams designer,” J. Int. Sci. Publ.: Mater., Methods Technol., 2008, no. 2 (1), pp. 176–184.

  8. Lutsyk, V. and Zelenaya, A., Improvement of the method to search low-melting solvents for the crystals MBaNa(BO3)2 (M = Sc,Y) growth, Solid State Sci., 2012, vol. 14, nos. 11–12, pp. 1604–1608.

    Article  CAS  Google Scholar 

  9. Vorob’eva, V.P., Zelenaya, A.E., Lutsyk, V.I., Sineva, S.I., Starykh, R.V., and Novozhilova, O.S., High-temperature area of the Fe–Ni–Co–Cu phase diagram: Experimental study and computer design, J. Phase Equilib. Diffus., 2021, vol. 42, no. 2, pp. 175–193.

    Article  Google Scholar 

  10. Islak, S., Buytoz, S., Ersoz, E., Orhan, N., et al., Effect on microstructure of TiO2 rate in Al2O3–TiO2 composite coating produced using plasma spray method, Optoelectron. Adv. Mater., 2012, vol. 6, nos. 9–10, pp. 844–849.

    CAS  Google Scholar 

  11. Toropov, N.A., Barzakovskii, V.P., Lapin, V.V., and Kurtseva, N.N., Diagrammy sostoyaniya silikatnykh sistem. Spravochnik. Vypusk pervyi. Dvoinye sistemy (State Diagrams of Silicate Systems, The Handbook, Part 1: Binary Systems), Leningrad: Nauka, 1969.

  12. Levin, E.M., Robbins, C.R., and McMurdie, H.F., Phase Diagrams for Ceramists, Columbus: Am. Ceram. Soc., 1964.

    Google Scholar 

  13. de Noirfontaine, M.N., Tusseau-Nenez, S., Girod-Labianca, C., and Pontikis, V., CALPHAD formalism for Portland clinker: Thermodynamic models and databases, J. Mater. Sci., 2012, vol. 47, pp. 1471–1479.

    Article  CAS  Google Scholar 

  14. Toropov, N.A. and Galakhov, F.Ya., Solid solutions in Al2O3–SiO2 system, Izv. AN SSSR, Otd. Khim. Nauk, 1958, no. 1, pp. 8–11.

  15. Aramaki, S. and Roy, R., Revised phase diagram for the system Al2O3–SiO2, J. Am. Ceram. Soc., 1962, vol. 45, no. 5, pp. 229–242.

    Article  CAS  Google Scholar 

  16. Li, Y., Liu, C., Zhang, T., Jiang, M., and Peng, C., Thermodynamic assessment of Al2O3–SiO2–Ce2O3 system, Metall. Res. Technol., 2017, vol. 114, no. 3, p. 304.

    Article  CAS  Google Scholar 

  17. Kirillova, S.A., Almjashev, V.I., and Gusarov, V.V., Phase relationships in the SiO2–TiO2 system, Russ. J. Inorg. Chem., 2011, vol. 56, no. 9, pp. 1464–1471.

    Article  CAS  Google Scholar 

  18. Toropov, N.A. and Galakhov, F.Ya., Liquation in ZrO2–SiO2 system, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1956, no. 2, pp. 157–162.

  19. Butterman, W.C. and Foster, W.R., Zircon stability and the ZrO2–SiO2 phase diagram, Am. Mineral., 1967, vol. 52, nos. 5–6, pp. 880–885.

    CAS  Google Scholar 

  20. Kamaev, D.N., Archugov, S.A., and Mikhailov, G.G., Study and thermodynamic analysis of the ZrO2–SiO2 system, Russ. J. Appl. Chem., 2005, vol. 78, no. 2, pp. 200–203.

    Article  CAS  Google Scholar 

  21. Kwon, S.Y. and Jung, I.-H., Critical evaluation and thermodynamic optimization of the CaO–ZrO2 and SiO2–ZrO2 systems, J. Am. Ceram. Soc., 2017, vol. 37, no. 3, pp. 1105–1116.

    Article  CAS  Google Scholar 

  22. Troitzsch, U. and Ellis, D.J., The ZrO2–TiO2 phase diagram, J. Mater. Sci., 2005, vol. 40, no. 11, pp. 4571–4577.

    Article  CAS  Google Scholar 

  23. Saenko, I., Ilatovskaia, M., Savinykh, G., and Fabrichnaya, O., Experimental investigation of phase relations and thermodynamic properties in the ZrO2–TiO2 system, J. Am. Ceram. Soc., 2018, vol. 101, pp. 386–399.

    Article  CAS  Google Scholar 

  24. Lakiza, S.M. and Lopato, L.M., Stable and metastable phase relations in the system alumina–zirconia–yttria, J. Am. Ceram. Soc., 1997, vol. 80, no. 4, pp. 893–902.

    Article  CAS  Google Scholar 

  25. Jerebtsov, D.A., Mikhailov, G.G., and Sverdina, S.V., Phase diagram of the system: Al2O3–ZrO2, Ceram. Int., 2000, vol. 26, pp. 821–823.

    Article  CAS  Google Scholar 

  26. Lakiza, S., Fabrichnaya, O., Zinkevich, M., and Aldinger, F., On the phase relations in the ZrO2–YO1.5–AlO1.5 system, J. Alloys Compd., 2006, vol. 420, nos. 1–2, pp. 237–245.

    Article  CAS  Google Scholar 

  27. Chen, B., Feng, J., Zhai, Y., Sun, Z., Liu, H., Jiang, Y., He, J., and Peng, H., Effect of oxide particles on microstructure and mechanical properties of the 45 carbon structural steel, Materials, 2020, vol. 13, no. 5, p. 1232.

    Article  CAS  Google Scholar 

  28. Toropov, N.A., Barzakovskii, V.P., Lapin, V.V., Kurtseva, N.N., and Boikova, A.I., Diagrammy sostoyaniya silikatnykh sistem. Spravochnik. No. 3. Troinye silikatnye sistemy (State Diagrams of Silicate Systems, The Handbook, Part 3: Ternary Silicate Systems), Leningrad: Nauka, 1972.

  29. Barzakovskii, V.P., Lapin, V.V., Kurtseva, N.N., and Boikova, A.I., Diagrammy sostoyaniya silikatnykh sistem. Spravochnik. No. 4. Troinye silikatnye sistemy (State Diagrams of Silicate Systems, The Handbook, Part 4: Ternary Silicate Systems), Leningrad: Nauka, 1974.

  30. Ilatovskaia, M., Savinykh, G., and Fabrichnaya, O., Thermodynamic description of the ZrO2–TiO2–Al2O3 system based on experimental data, J. Eur. Ceram. Soc., 2017, vol. 37, no. 10, pp. 3461–3469.

    Article  CAS  Google Scholar 

  31. Pena, P. and de Aza, S., El sistema ZrO2–SiO2–TiO2, Bol. Soc. Esp. Ceram. Vidr., 1976, vol. 15, no. 2, pp. 93–95.

    Google Scholar 

  32. Pena, P. and de Aza, S., The zircon thermal behavior: Effect of impurities, J. Mater. Sci., 1984, vol. 19, pp. 135–142.

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out with the financial support of the Russian Foundation for Basic Research and the State Atomic Energy Corporation Rosatom as part of scientific project no. 20-21-00056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Vorob’eva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorob’eva, V.P., Zelenaya, A.E., Lutsyk, V.I. et al. Prediction of the Liquidus of the Quaternary System of Titanium, Aluminum, Silicon, and Zirconium Oxides. Glass Phys Chem 47, 616–621 (2021). https://doi.org/10.1134/S1087659621060328

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659621060328

Keywords:

Navigation