Skip to main content
Log in

Ceramic Composite Matrices Based on the LaPO4–ZrO2 System: Preparation and Properties

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The original approach to the use of ceramic composites as matrices for the solidification and disposal of the actinide-rare earth fraction of high-level radioactive waste (HLW ) is considered. Ceramic composites are prepared by sintering nanosized powders of (1 – x)LaPO4xZrO2 precalcined at 850°C using unstabilized zirconium oxide. The calcined powders are subjected to stepwise sintering in the temperature range 1000–1300°C and at 1600°C to obtain ceramic composite matrices (1 – x)LaPO4xZrO2. Experiments on the leaching of ceramic samples sintered at a temperature of 1600°C are carried out. The rates of leaching of La3+ and Zr4+ ions from ceramic samples in distilled water are calculated; the results are compared with the previously obtained data for similar matrices in a concentrated solution of sodium chloride and sulfate. The results of the study of ceramic matrices before and after leaching by the XRD and electron microscopy methods are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Neumeier, S., Arinicheva, Y., Ji, Y., Heuser, J.M., Kowalski, P.M., Kegler, P., Schlenz, H., Bosbach, D., and Deissmann, G., New insights into phosphate based materials for the immobilisation of actinides, Radiochim. Acta, 2017, vol. 105, no. 11, pp. 961–984.

    Article  CAS  Google Scholar 

  2. Ji, Y., Kowalski, P.M., Neumeiera, S., Deissmanna, G., Kulriyac, P.K., and Gale, J.D., Atomistic modeling and experimental studies of radiation damage in monazite-type LaPO4 ceramics, Nucl. Instrum. Methods Phys. Res., Sect. B, 2017, vol. 393, pp. 54–58.

    CAS  Google Scholar 

  3. Rayat, M.S., Tech, S.S.G.M., Singh, R., and Sharma, L., Fabrication and machining of ceramic composites—A review on current scenario, Mater. Manuf. Process., 2017, vol. 32, no. 13, pp. 1451–1474.

    Article  CAS  Google Scholar 

  4. Rafiuddin, M.R. and Grosvenor, A.P., An investigation of the chemical durability of hydrous and anhydrous rare-earth phosphates, J. Nucl. Mater., 2018, vol. 509, pp. 631–643.

    Article  CAS  Google Scholar 

  5. Rafiuddin, M.R. and Grosvenor, A.P., Probing the effect of radiation damage on the structure of rare-earth phosphates, J. Alloys Compd., 2015, vol. 653, pp. 279–289.

    Article  CAS  Google Scholar 

  6. Teng, Y., Wang, X., Huang, Y., Wu, L., and Zeng, P., Hot-pressure sintering, microstructure and chemical durability of Ce0.5Eu0.5PO4 monazite ceramics, Ceram. Int., 2015, vol. 41, no. 8, pp. 10057–10062.

    Article  CAS  Google Scholar 

  7. Teng, Y., Zeng, P., Huang, Y., Wu, L., and Wang, X., Hot-pressing of monazite Ce0.5Pr0.5PO4 ceramic and its chemical durability, J. Nucl. Mater., 2015, vol. 465, pp. 482–487.

    Article  CAS  Google Scholar 

  8. Dacheux, N., Clavier, N., and Podor, R., Versatile monazite: Resolving geological records and solving challenges in materials science. Monazite as a promising long-term radioactive waste matrix: Benefits of high-structural flexibility and chemical durability, Am. Mineral., 2013, vol. 98, nos. 5–6, pp. 833–847.

    Article  CAS  Google Scholar 

  9. Clavier, N., Podor, R., and Dacheux, N., Crystal chemistry of the monazite structure, J. Eur. Ceram. Soc., 2011, vol. 31, no. 6, pp. 941–976.

    Article  CAS  Google Scholar 

  10. Meldrum, A., Boatner, L.A., Weber, W.J., and Ewing, R.C., Radiation damage in zircon and monazite, Geochim. Cosmochim. Acta, 1998, vol. 62, no. 14, pp. 2509–2520.

    Article  CAS  Google Scholar 

  11. Montel, J.-M., Minerals and design of new waste forms for conditioning nuclear waste, C. R. Geosci., 2011, vol. 343, nos. 2–3, pp. 230–236.

    Article  CAS  Google Scholar 

  12. Neumeier, S., Kegler, P., Arinicheva, Y., Shelyug, A., Kowalski, P.M., Schreinemachers, C., Navrotsky, A., and Bosbach, D., Thermochemistry of La1–xLnxPO4-monazites (Ln = Gd, Eu), J. Chem. Thermodyn., 2017, vol. 105, pp. 396–403.

    Article  CAS  Google Scholar 

  13. Zhao, X., Li, Y., Teng, Y., Wu, L., Bi, P., Yang, X., and Wan, L., The effect of Ce content on structure and stability of Gd1–xCexPO4: Theory and experiment, J. Eur. Ceram. Soc., 2019, vol. 39, no. 4, pp. 1555–1563.

    Article  CAS  Google Scholar 

  14. Caurant, D., Loiseau, P., Majerus, O., Aubin-Chevaldonnet, V., Bardez, I., and Quintas, A., Glasses, glass-ceramics and ceramics for immobilization of highy radioactive nuclear wastes, in Glasses, Glass-Ceramics and Ceramics, Caurant, D., Ed., New York: Nova Science, 2009, pp. 1–445.

    Google Scholar 

  15. Fox, K., Hoffman, E., Manjooran, N., and Pickrell, G., Advances in Materials Science for Environmental and Nuclear Technology, vol. 222 of Ceramic Transactions Book Series, Hoboken, NJ: Wiley, 2010.

  16. Lu, X., Deng, L., Kerisit, S., and Du, J., Structural role of ZrO2 and its impact on properties of boroaluminosilicate nuclear waste glasses, Mater. Degrad., 2018, vol. 2, p. 19.

    Article  Google Scholar 

  17. Wang, L. and Liang, T., Ceramics for high level radioactive waste solidification, J. Adv. Ceram., 2012, vol. 1, no. 3, pp. 194–203.

    Article  CAS  Google Scholar 

  18. Zubekhina, B. and Burakov, B., Leaching of plutonium from ‘old’ samples of single phase ceramics based on Zr0.79Gd0.14Pu0.04O1.93 and La0.9Pu0.1PO4 doped with 238Pu, MRS Adv., 2017, vol. 1, pp. 4249–4253.

    Article  Google Scholar 

  19. Zubekhina, B.Yu., Influence of radiation effects on the hydrochemical stability of matrices containing actinides, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Moscow: Moscow State Univ., 2020.

  20. Mezentseva, L.P., Osipov, A.V., Akatov, A.A., Doil’nitsyn, V.A., Pugachev, K.E., and Koptelova, L.A., Ceramic matrix composites based on lanthanum orthophosphate for disposal of high-level radioactive waste, Glass Phys. Chem., 2019, vol. 45, pp. 565–572.

  21. Mezentseva, L.P., Kruchinina, I.Yu., Osipov, A.V., Ugolkov, V.L., Popova, V.G., and Kuchaeva, S.K., Physical–chemical properties of nanopowders and ceramic samples of REE orthophosphates, Glass Phys. Chem., 2017, vol. 43, pp. 98–105.

  22. Mezentseva, L., Osipov, A., Ugolkov, V., Kruchinina, I., Maslennikova, T., and Koptelova, L., Sol-gel synthesis of precursors and preparation of ceramic composites based on LaPO4 with Y2O3 and ZrO2 additions, J. Sol-Gel Sci. Technol., 2019, vol. 92, no. 2, pp. 427–441.

    Article  CAS  Google Scholar 

  23. Mezentseva, L.P., Osipov, A.V., Krivoruchko, Yu.A., Lovtsova, O.Yu., and Koptelova, L.A., Ceramic composites based on nanosized lanthanum orthophosphate and their properties, Glass Phys. Chem., 2021, vol. 47, pp. 656–663.

  24. Li, Z., Liu, J., Li, S., and Du, H., Microstructure, mechanical properties and thermal shock resistance of ZrO2–LaPO4 composites, J. Alloys Compd., 2009, vol. 480, no. 2, pp. 863–866.

    Article  CAS  Google Scholar 

  25. Ma, J., Teng, Y., Huang, Y., Wu, L., Zhang, K., and Zhao, X., Effects of sintering process, pH and temperature on chemical durability of Ce0.5Pr0.5PO4 ceramics, J. Nucl. Mater., 2015, vol. 465, pp. 550–555.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Institute of Silicate Chemistry of the Russian Academy of Sciences with the support of the RF Ministry of Science and Higher Education (project no. AAAA-A19-119022290092-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Mezentseva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezentseva, L.P., Osipov, A.V., Ugolkov, V.L. et al. Ceramic Composite Matrices Based on the LaPO4–ZrO2 System: Preparation and Properties. Glass Phys Chem 47, 665–670 (2021). https://doi.org/10.1134/S1087659621060213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659621060213

Keywords:

Navigation