Skip to main content
Log in

New Composite Materials Based on Nanoporous Glasses Containing Manganese Oxides

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

A technique is developed and new composite materials containing manganese oxides MnxOy (x = 1, 2, 3; y = 2, 3, 4) are synthesized based on high-silica nanoporous glasses (NPGs). The synthesis is carried out by successive impregnation of porous glass plates in aqueous solutions of manganese chloride (MnCl2) and oxalic acid (H2C2O4), followed by heat treatment of the samples in an argon atmosphere to decompose the reaction product (MnC2O4). The chemical composition and phase composition of the obtained composites are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Tret'yakov, Yu.D. and Goodilin, E.A., Key trends in basic and application-oriented research on nanomaterials, Russ. Chem. Rev., 2009, vol. 78, no. 9, pp. 801–820.

    Article  CAS  Google Scholar 

  2. Huang, M., Li, F., Dong, F., Zhang, Y.X., and Zhang, L.L., MnO2-based nanostructures for high performance supercapacitors, J. Mater. Chem. A, 2015, vol. 3, no. 43, pp. 21380–23423.

    Article  CAS  Google Scholar 

  3. Sahoo, R.K., Das, A., Singh, S., Lee, D., Singh, S.K., Mane, R.S., Yun, J.M., and Kim, K.H., Synthesis of the 3D porous carbon-manganese oxide (3D-CMnO) nanocomposite and its supercapacitor behavior study, Prog. Nat. Sci.: Mater. Int., 2019, vol. 29, no. 4, pp. 410–415.

    Article  CAS  Google Scholar 

  4. Julien, C.M. and Mauger, A., Nanostructured MnO2 as electrode materials for energy storage, Nanomaterials, 2017, vol. 7, no. 11, pp. 396-1–396-42.

  5. Biswal, A., Tripathy, B.C., Sanjay, K., Subbaiah, T., and Minakshi, M., Electrolytic manganese dioxide (EMD): A perspective on worldwide production, reserves and its role in electrochemistry, RSC Adv., 2015, vol. 5, pp. 58255–58283.

    Article  CAS  Google Scholar 

  6. Vigil, J.A., Lambert, T.N., Kelly, M., and Aidun, R., Hybrid PEDOT/MnOx nanostructured electrocatalysts for oxygen reduction, Mater. Chem. Front., 2017, vol. 1, pp. 1668–1675.

    Article  CAS  Google Scholar 

  7. Zhang, Q.-X., Peng, D., and Huang, X.-J., Effect of morphology of α-MnO2 nanocrystals on electrochemical detection of toxic metal ions, Electrochem. Commun., 2013, vol. 34, pp. 270–273.

    Article  CAS  Google Scholar 

  8. Suib, S.L., Porous manganese oxide octahedral molecular sieves and octahedral layered materials, Acc. Chem. Res., 2008, vol. 41, no. 4, pp. 479–487.

    Article  CAS  Google Scholar 

  9. Pergament, A.L., Malinenko, V.P., Aleshina, L.A., and Kolchigin, V.V., Metal–insulator phase transition and electrical switching in manganese dioxide, Phys. Solid State, 2012, vol. 54, no. 3, pp. 2486–2490.

    Article  CAS  Google Scholar 

  10. Dadamiah, P.M.D., Shaik, P., Rosaiah, O.M., and Hussain, Fabrication of the Mn3O4 thin film electrodes by electron beam evaporation for supercapacitor applications, J. Electroanal. Chem., 2019, vol. 851, p. 113409-1–113409-10.

    Google Scholar 

  11. Akerman, J., Applied physics: Toward a universal memory, Science (Washington, DC, U. S.), vol. 308, no. 5721, pp. 508–510.

  12. Qu, D., Feng, X., Wei, X., Guo, L., Cai, H., Tang, H., and Xie, Z., Synthesis of MnO nano-particle flourine doped carbon and its application in hybrid supercapacitor, Appl. Surf. Sci., 2017, vol. 413, pp. 344–350.

    Article  CAS  Google Scholar 

  13. Gromadskii, D.G., Hydrothermal express synthesis of CNT/MnO2 - composite for asymmetric supercapacitor, Surf. Eng. Appl. Electrochem., 2016, vol. 53, no. 3, pp. 289–299.

    Article  Google Scholar 

  14. Gaitko, O.M., Baranchikov, A.E., and Ivanov, V.K., Microwave-hydrothermal hexamethylenetetramine-mediated synthesis of nanocrystalline MnO2, Tonk. Khim. Tekhnol., 2018, vol. 13, no. 2, pp. 56–63.

    Google Scholar 

  15. Mane, V.J., Malavekar, D.B., Ubale, S.B., Lokhande, V.C., and Lokhande, C.D., Manganese dioxide thin films deposited by chemical bath and successive ionic layer adsorption and reaction deposition methods and their supercapacitive performance, Inorg. Chem. Commun., 2020, vol. 115, pp. 107853-1–107853-17.

    Article  CAS  Google Scholar 

  16. Regulski, M., Przenioslo, R., Sosnowska, I., Hohlwein, D., and Schneider, R., Neutron diffraction study of the magnetic structure of α-Mn2O3, J. Alloys Compd., 2004, vol. 362, pp. 236–240.

    Article  CAS  Google Scholar 

  17. Shuang, Xi., Yinlong, Zhu., Yufu, Yang, and Ying, Liu., Direct synthesis of MnO2 nanorods on carbon cloth as flexible supercapacitor electrode, J. Nanomater., 2017, vol. 2017, p. 7340961(1)–7340961(8).

  18. Baryshnikov, S.V., Charnaya, E.V., Milinskii, A.Yu., Shatskaya, Yu.A., and Michel, D., Dielectric and calorimetric investigations of KNO3 in pores of nanoporous silica matrices MCM-41, Phys. Solid State, 2012, vol. 54, no. 3, pp. 636–641.

    Article  CAS  Google Scholar 

  19. Mishina, E.D., Sherstyuk, N.E., Stadnichuk, V.I., Vorotilov, K.A., Vasil`ev, V.A., Sigov, A.S., Zhigalina, O.M., Ohta, N., and Nakabayashi, S., Ferroelectrics templated in nanoporous silicon membranes, Ferroelectrics, 2003, vol. 286, pp. 205–211.

    Article  CAS  Google Scholar 

  20. Rysiakiewicz-Pasek, E., Cizman, A., Drozdova, I., Polyakova, I., and Antropova, T., Synthesis, structure and properties of mixed KNO3-NaNO3 embedded into nanoporous silica glass, J. Compos. B, 2016, vol. 91, pp. 291–295.

    Article  CAS  Google Scholar 

  21. Antropova, T.V., Girsova, M.A., Anfimova, I.N., and Drozdova, I.A., Spectral properties of the high-silica porous glasses doped by silver halides, J. Lumin., 2018, vol. 193, pp. 29–33.

    Article  CAS  Google Scholar 

  22. Antropova, T.V., Girsova, M.A., Anfimova, I.N., Golovina, G.F., Kurilenko, L.N., and Firstov, S.V., A method of manufacturing a luminescent bismuth-containing quartzoid material based on high-silica porous glass, RF Patent no. 2605711, Byull. Izobret., 2016, no. 34.

  23. Golosovsky, I.V., Mirebeau, I., Fauth, F., Kurdyukov, D.A., and Kumzerov, Yu.A., Low-temperature phase transition in nanostructured MnO embedded within the channels of MCM-41-type matrices, Phys. Rev. B, 2006, vol. 74, no. 5, pp. 054433-1–054433-5.

    Google Scholar 

  24. Golosovsky, I.V., Mirebeau, I., Elkaim, E., Kurdyukov, D.A., and Kumzerov, Y.A., Structure of mno nanoparticles embedded into channel-type matrices, Eur. Phys. J. B, 2005, vol. 47, pp. 55–62.

    Article  CAS  Google Scholar 

  25. Golosovsky, I.V., Arcon, D., Jaglicic, Z., Cevc, P., Sakhnenko, V.P., Kurdyukov, D.A., and Kumzerov, Y.A., ESR studies of MnO embedded into silica nanoporous matrices with different topology, Phys. Rev. B, 2005, vol. 72, no. 14, pp. 144410(1)–144410(6).

    Google Scholar 

  26. Golosovsky, I.V., Mirebeau, I., Andre, G., Kurdyukov, D.A., Kumzerov, Yu.A., and Vakhrushev, S.B., Magnetic ordering and phase transition in MnO embedded in a porous glass, Phys. Rev. Lett., 2001, vol. 86, no. 25, pp. 5783–5786.

    Article  CAS  Google Scholar 

  27. http://database.iem.ac.ru/mincryst/rus/search.php.

  28. Rysiakiewicz-Pasek, E., Antropova, T., Cizman, A., Pshenko, O., and Polyakova, I., New insight into phase transitions of porous glass-based ferroelectric nanocomposites, Materials, 2020, vol. 13, no. 17, pp. 3698-1–3698-10.

  29. Vázquez, M., ElKammouni, R., Kurlyandskaya, G.V., Rodionova, V., and Kraus, L., Bimagnetic microwires, magnetic properties, and high-frequency behavior, Springer Ser. Mater. Sci., 2016, vol. 231, pp. 279–310.

    Article  CAS  Google Scholar 

  30. Antropova, T.V., Anfimova, I.N., Drozdova, I.N., Kostyreva, T.G., Polyakova, I.G., Pshenko, O.A., and Stolyar, S.V., Method of obtaining high-silica porous glass with magnetic properties, RF Patent no. 2540754, Byull. Izobret., 2015, no. 4.

Download references

ACKNOWLEDGMENTS

The authors thank I.N. Anfimov for the synthesis of porous glass. They also thank T.G. Kostyrev and L.F. Wild for their help in determining the chemical composition of the research objects.

Funding

Development of a methodology and synthesis of new composite materials containing manganese oxides were carried out as part of project SP-2728.2021.1, supported by a scholarship of the President of the Russian Federation for young scientists and graduate students carrying out promising research and development in priority areas of the modernization of the Russian economy (2021–2023). Part of the study concerning the synthesis of two-phase and porous glasses, as well as the chemical and phase analysis of the synthesized composites, was carried out as part of a state assignment of the Institute of Chemistry of the Russian Academy of Sciences with the support of the Ministry of Education and Science of Russia (topic no. AAAA-A19-119022290087-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Pshenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pshenko, O.A., Arsentiev, M.Y., Kurylenko, L.N. et al. New Composite Materials Based on Nanoporous Glasses Containing Manganese Oxides. Glass Phys Chem 47, 446–450 (2021). https://doi.org/10.1134/S1087659621050126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659621050126

Keywords:

Navigation