Skip to main content
Log in

Citrate-Nitrate Synthesis and the Electrophysical Properties of Ceramics in the K2O–TiO2–Fe2O3 System

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

This paper presents a study of the electrically conductive properties of ceramics based on phases crystallizing in the K2O–Fe2O3–TiO2 system, when using for their synthesis the method of pyrolysis of citrate-nitrate compositions. Both single-phase titanates and their mixtures are obtained. This paper presents studies of the morphology and structure of the compounds obtained. The value of their electrical conductivity is measured in the temperature range 150–700°C. It is found that the phase with the lepidocrocite structure exhibits the highest conductivity among the considered compositions in the entire temperature range (Eact. = 0.415 eV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Gorokhovsky, A.V., Tretyachenko, E.V., Goffman, V.G., Gorshkov, N.V., Fedorov, F.S., and Sevryugin, A.V., Preparation and dielectric properties of ceramics based on mixed potassium titanates with the hollandite structure, Inorg. Mater., 2016, vol. 52, no. 6, pp. 587–592.

    Article  CAS  Google Scholar 

  2. Goffman, V.G., Gorokhovsky, A.V., Gorshkov, N.V., Fedorov, F.S., Tretychenko, E.V., and Sevrugin, A.V., Data on electrical properties of nickel modified potassium polytitanates compacted powders, Data in Brief, 2015, vol. 4, pp. 193–198.

    Article  CAS  Google Scholar 

  3. Mumme, W.G. and Reid, A.F., Non-stoichiometric sodium iron titanate, NaxFexTi2-xO4 0.9 > x > 0.75, Acta Crystallogr., 1968, vol. 24, pp. 625–631.

    Article  CAS  Google Scholar 

  4. Sanchez-Monjaras, T., Gorokhovsky, A., and Escalante-Garcia, J.I., Molten salt synthesis and characterization of potassium polytitanate ceramic precursors with varied TiO2/K2O molar ratios, J. Am. Ceram. Soc., 2008, vol. 91, no. 9, pp. 3058–3065.

    Article  CAS  Google Scholar 

  5. Dion, M., Piffard, Y., and Tournoux, M., The tetratitanates M2Ti4O9 (M = Li, Na, K, Rb, Cs, Tl, Ag), J. Inorg. Nucl. Chem., 1978, vol. 40, no. 5, pp. 917–918.

    Article  CAS  Google Scholar 

  6. Morozov, N.A., Sinelshchikova, O.Yu., Besprozvannykh, N.V., and Maslennikova, T.P., Effect of the method of synthesis on the photocatalytic and sorption properties for potassium polytitanates doped with di- and trivalent metal ions, Russ. J. Inorg. Chem., 2020, vol. 65, no. 8, pp. 1127–1134.

    Article  CAS  Google Scholar 

  7. Mori, T., Suzuki, J., Fujimoto, K., Watanabe, M., and Hasegawa, Y., Reductive decomposition of nitrate ion to nitrogen in water on a unique hollandite photocatalyst, Appl. Catal. B: Environ., 1999, vol. 23, pp. 283–289.

    Article  CAS  Google Scholar 

  8. Fedorov, F.S., Varezhnikov, A.S., Kiselev, I., Kolesnichenko, V.V., Burmistrov, I.N., Sommer, M., Fuchs, D., Kubel, C., Gorohovsky, A.V., and Sysoev, V.V., Potassium polytitante gas-sensing study by impendance spectroscopy, Anal. Chim. Acta, 2015, vol. 897, pp. 81–86.

    Article  CAS  Google Scholar 

  9. Fort, A., Addabbo, T., Vignoli, V., Bertoccia, F., Magnaini, M., Atrei, A., and Gregorkiewitz, M., Gas-sensing properties and modeling of silver doped potassium hollandite, Sens. Actuators, B, 2014, vol. 194, pp. 427–439.

    Article  CAS  Google Scholar 

  10. Cao, C., Singh, K., Hay Kan, W., Avdeev, M., and Thangadurai, V., Electrical properties of hollandite-type Ba1.33Ga2.67Ti5.33O16, K1.33Ga1.33Ti6.67O16, and K1.54Mg0.77Ti7.23O16, Inorg. Chem., 2019, vol. 58, no. 8, pp. 4782–4791.

    Article  CAS  Google Scholar 

  11. Reddy, M.V., Sharma, N., Adams, S., Prasada Rao, R., Peterson, V.K., and Chowdari, B.V.R., Evaluation of undoped and M-doped TiO2, where M = Sn, Fe, Ni/Nb, Zr, V, and Mn, for lithium-ion battery applications prepared by the molten-salt method, RSC Adv., 2015, vol. 37, no. 5, pp. 29535–29544.

    Article  CAS  Google Scholar 

  12. Belokoneva, E.L. and Smirnitskaya, Yu.A., Crystal structure of Na, Ti-bronze (Na0.35Fe0.10)(Ti1.54Fe0.40)(Ti1.81Fe0.19)O8, Crystallogr. Rep., 1993, vol. 38, no. 6, pp. 756–758.

    Google Scholar 

  13. Endo, T., Nagayama, H., Sato, T., and Shimada, M., Crystal growth of potassium titanates in the system K2O–Fe2O3–TiO2, J. Cryst. Growth, 1986, vol. 78, pp. 423–430.

    Article  CAS  Google Scholar 

  14. Marimuthu, K.N., Smart, L.E., Berry, F.J., and Varadaraju, U.V., Solid state studies on K2Ti6 – xNbxFe2O16 (x = 0 and 1) and lithium insertion into K2Ti6M2O16 (M = Cr, Fe and Ga) and K2Ti5NbFe2O16 hollandite type phases, Mater. Chem. Phys., 2003, vol. 82, pp. 672–678.

    Article  CAS  Google Scholar 

  15. Ramarkrishna, S., Mahender, N., Reddy, J.R., Kurra, S., Nagabhushan, E., and Vithal, M., Preparation and characterization of nitrogen dopper K2M2Ti6O16 (M = Cr and Fe) with enhaced photocatalytic activity, Indian J. Chem., 2015, vol. 54A, pp. 1026–1031.

    Google Scholar 

  16. Hasan, Q.U., Yang, D., Zhou, J.P., Lei, Y.X., Wang, J.Z., and Awan, S.U., Novel single-crystal hollandite K1.46Fe0.8Ti7.2O16 microrods: Synthesis, double absorption, and magnetism, Inorg. Chem., 2018, vol. 57, no. 24, pp. 15187–15197.

    Article  CAS  Google Scholar 

  17. Bevara, S., Achary, S.N., Garg, N., Chitnis, A., Sastry, P.U., Shinde, A.B., Krishna, P.S.R., and Tyagi, A.K., Pressure and temperature dependent structural studies on hollandite type ferrotitanate and crystal structure of a high pressure phase, Inorg. Chem., 2018, vol. 57, no. 4, pp. 2157–2168.

    Article  CAS  Google Scholar 

  18. Knyazev, A.V., Chernorukov, N.G., Letyanina, I.A., Zakharova, Y.A., and Ladenkov, I.V., Crystal structure and thermodynamic properties of dipotassium diiron(III) hexatitanium oxide, J. Therm. Anal. Calorim., 2013, vol. 112, pp. 991–996.

    Article  CAS  Google Scholar 

  19. Hayashi, F., Furui, K., Shiiba, H., Yubuta, K., Sudare, T., Terashima, C., and Teshima, K., Flux growth of single-crystalline hollandite-type potassium ferrotitanate microrods from KCl flux, Front. Chem., 2020, vol. 20, pp. 1–7.

    Google Scholar 

  20. Machida, M., Ma, X.W., Taniguchi, H., Yabunaka, J., and Kijima, T., Pillaring and photocatalytic property of partially substituted layered titanates, Na2Ti3-xMxO7 and K2Ti4-xMxO9 (M = Mn, Fe, Co, Ni, Cu), J. Mol. Catal. A, 2000, vol. 155, pp. 131–142.

    Article  CAS  Google Scholar 

  21. Kang, S.O., Jang, H.S., Kim, Y.I., Kim, K.B., and Jung, M.J., Study on the growth of potassium titanate nanostructures prepared by sol-gel-calcination process, Mater. Lett., 2007, vol. 61, pp. 473–477.

    Article  CAS  Google Scholar 

  22. Groult, D., Mercey, C., and Raveau, B., Nouveaux oxydes a structure en fauillets: Les titanates de potassium non-stoechiometriques Kx(MyTi2 – y)O4, J. Solid State Chem., 1980, vol. 32, pp. 289–296.

    Article  CAS  Google Scholar 

  23. Reid, A.F., Mumme, W.G., and Wadsley, A.D., A new class of compound \({\text{M}}_{x}^{ + }{\text{A}}_{x}^{{3 + }}{\text{T}}{{{\text{i}}}_{{2 - x}}}{{{\text{O}}}_{4}}\) (0.60 < x < 0.80) typified by RbxMnxTi2 – xO4, Acta Crystall., Sect. B, 1968, vol. 24, pp. 1228–1233.

    Article  Google Scholar 

  24. Genkina, E.A., Maksimov, B.A., Dem’yanets, L.N., and Lazarevskaya, O.A., Synthesis and structure of a new compound of the hollandite series, Crystallogr. Rep., 1993, vol. 38, no. 6, pp. 747–748.

    Google Scholar 

  25. Sasaki, T., Watanabe, M., Fujiki, Y., Kitami, Y., and Yokoyama, M., Crystal structure of octatitanate M2Ti8O17 (M = K, Rb), J. Solid State Chem., 1991, vol. 92, pp. 537–542.

    Article  CAS  Google Scholar 

  26. Watts, J.A., K3Ti8O17, a new alkali titanate bronze, J. Solid State Chem., 1970, vol. 1, nos. 3–4, pp. 319–325.

    Article  Google Scholar 

  27. West, A., Solid State Chemistry and its Applications, New York: Wiley, 2014.

    Google Scholar 

  28. Irvine, J.T.S., Sinclair, D.C., and West, A.R., Electrocheramics: Characterization by impendance spectroscopy, Adv. Mater., 1990, vol. 3, pp. 132–138.

    Article  Google Scholar 

Download references

Funding

This study was carried out with the financial support of the Russian Foundation for Basic Research as part of scientific project no. 19-33-90108 “Graduate students” and with the partial support of the Ministry of Education and Science of the Russian Federation as part of a state assignment of the Institute of Silicate Chemistry, Russian Academy of Sciences (topic no. АААА-А19-119022290092-5).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. A. Morozov or O. Yu. Sinelshchikova.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, N.A., Sinelshchikova, O.Y., Besprozvannykh, N.V. et al. Citrate-Nitrate Synthesis and the Electrophysical Properties of Ceramics in the K2O–TiO2–Fe2O3 System. Glass Phys Chem 47, 481–488 (2021). https://doi.org/10.1134/S1087659621050114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659621050114

Keywords:

Navigation