Skip to main content
Log in

Predicting the Temperature Range of Arrhenius Crossover of Structural Relaxation in Fragile Glass-forming Liquids

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

In the present study, we show that the range of the temperature ratio TA/Tg for fragile glass-forming liquids is predicted by adopting TA ~ Tx, where TA is the temperature that the Arrhenius crossover appears and Tx is the cooperativity onset temperature extracted from the Bond Strength–Coordination Number Fluctuation model proposed by the authors. Specifically, when the above relation is used in conjunction with the two-thirds rule (Tg/Tm = 2/3) and the empirical criterion for good glass-formers (TA/Tm \( \gtrsim \) 1.0), the predicted range of the Arrhenius crossover is calculated to be 1.5 \( \lesssim \) TA/Tg < 2.1. This range is in good agreement with the values confirmed in fragile systems, encompassing a wide range of glass-forming materials, excepting the network systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Sun, M., and Yao, X., Volume heterogeneity in liquid Cu near the dynamical crossover temperature Ta, J. Non-Cryst. Solids, 2021, vol. 556, p. 120559.

    Article  CAS  Google Scholar 

  2. Ren, N., Hu, L., Wang, L., and Guan, P., Revealing a hidden dynamic signature of the non-Arrhenius crossover in metallic glass-forming liquids, Scr. Mater., 2020, vol. 181, pp. 43–47.

    Article  CAS  Google Scholar 

  3. Jaiswal, A., Egami, T., Kelton, K.F., Schweizer, K.S., and Zhang, Y., Correlation between fragility and the Arrhenius crossoer phenomenon in metallic, molecular, and network liquids, Phys. Rev. Lett., 2016, vol. 117, p. 205701.

    Article  Google Scholar 

  4. Angell, C.A., Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems, J. Non-Cryst. Solids, 1991, vols. 131–133, pp. 13–31.

    Article  Google Scholar 

  5. Sanditov, D.S., Mashanov, A.A., Sanditov, B.D., and Mantatov, V.V., Fragility and anharmonicity of lattice vibrations of glass-forming systems, Glass Phys. Chem., 2008, vol. 34, pp. 389–393.

    Article  CAS  Google Scholar 

  6. Zografi, G., and Newman, A., Interrelationships between structure and the properties of amorphous solids of pharmaceutical interest, J. Pharm. Sci., 2017, vol. 106, pp. 5–27.

    Article  CAS  Google Scholar 

  7. Kokshenev, V.B., Characteristic temperature of liquid–glass transition, Phys. A (Amsterdam, Neth.), 1999, vol., 262, pp. 88–97.

    Google Scholar 

  8. Aniya, M., A model for the fragility of the melts, J. Therm. Anal. Calorim., 2002, vol. 69, pp. 971–978.

    Article  CAS  Google Scholar 

  9. Ikeda, M. and Aniya, M., Understanding the Vogel–Fulcher–Tammann law in terms of the bond strength–coordination number fluctuation model, J. Non-Cryst. Solids, 2013, vols. 371–372, pp. 53–57.

    Article  CAS  Google Scholar 

  10. Ikeda, M. and Aniya, M., A measure of cooperativity in non-Arrhenius structural relaxation in terms of the bond strength–coordination number fluctuation model, Eur. Polym. J., 2017, vol. 86, pp. 29–40.

    Article  CAS  Google Scholar 

  11. Ikeda, M. and Aniya, M., Analysis and characterization of the transition from the Arrhenius to non-Arrhenius structural relaxation in fragile glass-forming liquids, J. Therm. Anal. Calorim., 2018, vol. 132, pp. 835–842.

    Article  CAS  Google Scholar 

  12. Kauzmann, W., The nature of the glassy state and the behavior of liquids at low temperatures, Chem. Rev., 1948, vol. 43, pp. 219–256.

    Article  CAS  Google Scholar 

  13. Sakka, S. and Mackenzie, J.D., Relation between apparent glass transition temperature and liquidus temperature for inorganic glasses, J. Non-Cryst. Solids, 1971, vol. 6, pp. 145–162.

    Article  CAS  Google Scholar 

  14. Surovtsev, N.V., On the glass-forming ability and short-range bond ordering of liquids, Chem. Phys. Lett., 2009, vol. 477, pp. 57–59.

    Article  CAS  Google Scholar 

  15. Koštál, P., Hofírek, T., and Málek, J., Viscosity measurement by thermomechanical analyzer, J. Non-Cryst. Solids, 2018, vol. 480, pp. 118–122.

    Article  CAS  Google Scholar 

  16. Soklaski, R., Tranz, V., Nussinov, Z., Kelton, K.F., and Yang, L., A locally preferred structure characteristics all dynamical regimes of a supercooled liquid, Philos. Mag., 2016, vol. 96, pp. 1212–1227.

    Article  CAS  Google Scholar 

  17. Tanaka, H., Two-oder-parameter model of the liquid–glass transition. I. Relation between glass transition and crystallization, J. Non-Cryst. Solids, 2005, vol. 351, pp. 3371–3384.

    Article  CAS  Google Scholar 

  18. Ikeda, M. and Aniya, M., Linking the glass-forming ability to the Arrhenius crossover of structural relaxation, J. Non-Cryst. Solids, 2021, vol. 555, p. 120617.

    Article  CAS  Google Scholar 

  19. Kondratiev, A. and Khvan, A.V., Analysis of viscosity equations relevant to silicate melts and glasses, J. Non-Cryst. Solids, 2016, vol. 432, pp. 366–383.

    Article  CAS  Google Scholar 

  20. Ping, W., Paraska, D., Baker, R., Harrowell, P., and Angell, C.A., Molecular engineering of the glass transition: Glass-forming ability across a homologous series of cyclic stilbenes, J. Phys. Chem. B, 2011, vol. 115, pp. 4696–4702.

    Article  CAS  Google Scholar 

  21. Novikov, V.N., connection between the glass transition temperature T g and the Arrhenius temperature T A in supercooled liquids, Chem. Phys. Lett., 2016, vol. 659, pp. 133–136.

    Article  CAS  Google Scholar 

  22. Sanditov, D.S., Tsydypov, Sh.B., Sanditov, B.D., and Sangadiev, S.Sh., The hole-cluster model of vitreous solids and their melts, Glass Phys. Chem., 2000, vol. 26, pp. 223–225.

    CAS  Google Scholar 

  23. Cheng, S., Viscosity–temperature relation based on the evolution of medium-range structures of silica, J. Non-Cryst. Solids, 2021, vol. 557, p. 120582.

    Article  CAS  Google Scholar 

  24. Aniya, M. and Ikeda, M., Arrhenius crossover phenomena and ionic conductivity in ionic glass-forming liquids, Phys. Status Solidi B, 2020, vol. 257, p. 2000139.

    Article  CAS  Google Scholar 

  25. Pan, S., Wu, Z.W., Wang, W.H., Li, M.Z., and Xu, L., Structural origin of fractional Stokes-Einstein relation in glass-forming liquids, Sci. Rep., 2017, vol. 7, p. 39938.

    Article  CAS  Google Scholar 

  26. Aniya, M. and Ikeda, M., The bond strength–coordination number fluctuation model of viscosity: Concept and applications, J. Polym. Res., 2020, vol. 27, p. 165.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported in part by JST CREST, Japan, JPMJCR1861 and JPMJCR18I2, and by JSPS KAKENHI nos. 21K04660, 20K05080, and 20H02430.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Ikeda.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masahiro Ikeda, Masaru Aniya Predicting the Temperature Range of Arrhenius Crossover of Structural Relaxation in Fragile Glass-forming Liquids. Glass Phys Chem 47, 427–430 (2021). https://doi.org/10.1134/S1087659621050072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659621050072

Keywords:

Navigation