Skip to main content
Log in

Development and Research on Ion-Conducting Membranes Based on Cross-Linked Polyvinyl Alcohol

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Membranes based on polyvinyl alcohol crosslinked with furfural, both unmodified and modified with aminosulfonic acid with and without tetraethoxysilane (TEOS), and membranes not crosslinked with furfural but modified with aminosulfonic acid are obtained and studied. The composition, surface morphology, degree of swelling in water, and specific electrical conductivity are studied. It is found that an electrolytic membrane based on polyvinyl alcohol crosslinked with furfural modified with tetraethoxysilane and aminosulfonic acid has the highest specific electrical conductivity (2.35 × 10–2 S/cm at a temperature of 95°С) and a wider range of temperature stability (20–160°С) in comparison with other obtained membranes based on polyvinyl alcohol and the reference membrane Nafion-115. It is determined that the degree of swelling of the developed membranes is rather high in comparison with the reference membrane Nafion-115.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Beloglazov, V.Yu., Baranov, I.E., and Shatkovskii, A.S., Fuel cell with solid polymer electrolyte: Structure of the catalytic layer, Elektrokhim. Energet., 2010, vol. 10, no. 1, pp. 29–33.

    CAS  Google Scholar 

  2. Krawczyk, J.M., Mazur, A.M., Sasin, T., and Stoklosa, A.W., Fuel cells as alternative power for unmanned aircraft systems – current situation and development trends, Trans. Inst. Aviation, 2014, vol. 4, no. 237, pp. 49–62.

    Article  Google Scholar 

  3. Lebedeva, O.V., Proton conducting membranes for hydrogen-air fuel elements, Izv. Vyssh. Uchebn. Zaved., Prikl. Khim. Biotekhnol., 2016, vol. 16, no. 1, pp. 7–19.

    Google Scholar 

  4. Napoli, L., Lavorante, M.J., Franco, J., Sanguinetti, A., and Fasoli, H., Effects on Nafion117 membrane using different strong acids in various concentrations, J. New Mater. Electrochem. Syst., 2013, vol. 16, no. 3, pp. 151–156.

    Article  CAS  Google Scholar 

  5. Dobrovol'skii, Yu.A., Pisareva, A.V., Leonova, L.S., and Karelin, A.I., New proton-conducting membranes for fuel cells and gas sensors, Al’tern. Energet. Ekol., 2004, vol. 20, no. 12, pp. 36–41.

    Google Scholar 

  6. Sachan, V.K., Devi, A., Katiyar, R.S., Nagarale, R.K., and Bhattacharya, P.K., Proton transport properties of sulphanilic acid tethered poly(methyl vinyl ether-alt-maleic anhydride)-PVA blend membranes, Eur. Polym. J., 2014, vol. 56, pp. 45–58.

    Article  CAS  Google Scholar 

  7. Moulay, S., Review: Poly(vinyl alcohol). Functionalizations and applications, Polymer-Plast. Technol. Eng., 2015, vol. 54, pp. 1289–1319.

    Article  CAS  Google Scholar 

  8. Mikhailova, A.M., Kolokolova, E.V., and Nikitina, L.V., Proton conductive polymer composite, RF Patent no. 2009128844, 2010.

  9. Kanakasabai, P., Vijay, P., Deshpande, A.P., and Varughese, S., Crosslinked poly(vinyl alcohol)/sulfonated poly(ether ether ketone) blend membranes for fuel cell applications-surface energy characteristics and proton conductivity, J. Power Sources, 2011, vol. 196, pp. 946–955.

    Article  CAS  Google Scholar 

  10. Pundir, S.S., Kuldeep, M., Rai, D.K., Ion transport studies in nanocomposite polymer electrolyte membrane of PVA-[C4C1Im][HSO4]-SiO2, J. Solid State Electrochem., 2018, vol. 22, pp. 1801–1815.

  11. Myakin, S.V., Sychov, M.M., Vasina, E.S., Ivanova, A.G., Zagrebel’nyi, O.A., Tsvetkova, I.N., and Shilova, O.A., Relationship between the composition of functional groups on the surface of hybrid silicophosphate membranes and their proton conductivity, Glass Phys. Chem., 2014, vol. 40, no. 1, pp. 97–98.

    Article  CAS  Google Scholar 

  12. Gopi, K.H., Dhavale, V.M., and Bhat, S.D., Development of polyvinyl alcohol/chitosan blend anion exchange membrane with mono and di quaternizing agents for application in alkaline polymer electrolyte fuel cells, Mater. Sci. Energy Technol., 2019, vol. 2, no. 2, pp. 194–202.

    Google Scholar 

  13. Erkartala, M., Aslanc, A., Dadia, S., Erkilica, U., Yazaydind, O., Ustaa, H., and Senb, U., Anhydrous proton conducting poly(vinyl alcohol) (PVA)/ poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS)/1,2,4-triazole composite membrane, Int. J. Hydrogen Energy, 2016, vol. 41, no. 26, pp. 11321–11330.

    Article  Google Scholar 

  14. Chanthad, C. and Wootthikanokkhan, J., Effects of crosslinking time and amount of sulfophthalic acid on properties of the sulfonated poly(vinyl alcohol) membrane, J. Appl. Polym. Sci., 2006, vol. 101, pp. 1931–1936.

    Article  CAS  Google Scholar 

  15. Gousse, C. and Gandini, A., Acetalization of polyvinyl alcohol with furfural, Eur. Polym. J., 1997, vol. 33, no. 5, pp. 667–671.

    Article  CAS  Google Scholar 

  16. Jimenez, A.R., Gedeon, C.P., and Castro, A.G., Effect of the sulfonation on proton exchange membrane synthesized from polyvinyl alcohol for fuel cell, Int. J. Appl. Eng. Res., 2018, vol. 13, no. 16, pp. 12616–12619.

    Google Scholar 

  17. Kamoun, E.A., Youssef, M.E., Abu-Saied, M.A., Fahmy, A., Khalil, H.F., and Abdelhai, F., Ion conducting nanocomposite membranes based on PVA-HAHAP for fuel cell application: II. Effect of modifier agent of PVA on membrane properties, Int. J. Electrochem. Sci., 2015, vol. 10, pp. 6627–6644.

    CAS  Google Scholar 

  18. Shilova, O.A. and Tsvetkova, I.N., A method of obtaining a silicophosphate proton-conducting material, mainly for membranes of fuel cells (options), RF Patent no. 2505481, Byull. Izobret., 2014, no. 3.

  19. Nagarale, R.K., Shahi, V.K., and Rangarajan, R., Preparation of polyvinyl alcohol-silica hybrid heterogeneous anion-exchange membranes by sol-gel method and their characterization, J. Membr. Sci., 2005, vol. 248, pp. 37–44.

    Article  CAS  Google Scholar 

  20. Realpe, J.A., Gomez, C.A., Gedeon, C., Acevedo, M.M., Reyes, M., Cortes, S.M., Puello, A., De Pombo, M., Correa, J., and Ballestero, K., Synthesis of a proton exchange membrane from polyvinyl alcohol (PVA) modified with Va2O5 for fuel cells, Contemp. Eng. Sci., 2017, vol. 10, no. 32, pp. 1561–1570.

    Article  Google Scholar 

  21. Tacx, J.C.J.F., Schoffeleers, H.M., Brands, A.G.M., and Teuwen, L., Dissolution behavior and solution properties of polyvinylalcohol as determined by viscometry and light scattering in DMSO, ethyleneglycol and water, Polymer, 2000, vol. 41, pp. 947–957.

    Article  CAS  Google Scholar 

  22. Solnyshkova, V.K. and Karuzina, I.A., Khimiya polimerov i polimernykh kompozitsii: uchebnoe posobie dlya studentov khimicheskikh i khimiko-tekhnologicheskikh spetsial’nostei (Chemistry of Polymers and Polymer Compositions, The School-Book), Pavlodar: Kereku, 2011.

  23. Mansur, H.S., Sadahira, C.M., Souza, A.N., and Mansur, A.A.P., FTIR spectroscopy characterization of poly(vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde, Mater. Sci. Eng., 2008, vol. 28, pp. 539–548.

    Article  CAS  Google Scholar 

  24. Silverstein, R., Bassler, G., and Morril, T., Spectrometric Identification of Organic Compounds, New York: Wiley, 1991.

    Google Scholar 

  25. Prosanov, I.Yu. and Matvienko, A.A., Study of PVA thermal destruction by means of IR and Raman spectroscopy, Phys. Solid State, 2010, vol. 52, no. 10, pp. 2203–2206.

    Article  CAS  Google Scholar 

  26. Poluektova, V.A., Shapovalov, N.A., Mukhacheva, V.D., and Makushchenko, I.S., Problems of phloroglucinepfurfurol oligomers synthesis and their infrared spectrum analysis, Sovrem. Probl. Nauki Obrazov., 2015, no. 1, part 1, pp. 122–129.

  27. Belyakova, E.G. and Koryakova, O.V., Study of the hardening process of coal plastic type using infra red spectroscopy technique, Vestn. YuUrGU, 2010, no. 31, pp. 4–9.

  28. Kuptsov, A.Kh. and Zhizhin, G.N., Fur’e-KR- i Fur’e-IK-spektry polimerov. Spravochnik (Fourier-Raman and Fourier-IR Spectra of Polymers, The Handbook), Moscow: Fizmatlit, 2001.

  29. Tarasevich, B.N., IK-spektry osnovnykh klassov organicheskikh soedinenii. Spravochnye materialy (IR-Spectra of Main Classes of Organic Compounds, Reference Book), Moscow, 2012.

  30. Tripathi, B.P. and Shahi, V.K., 3–[[3-(triethoxysilyl) propyl]amino]propane-1- sulfonic acid-poly(vinyl alcohol) cross-linked zwitterionic polymer electrolyte membranes for direct methanol fuel cell applications, Appl. Mater. Interfaces, 2009, vol. 1, no. 5, pp. 1002–1012.

    Article  CAS  Google Scholar 

  31. Liu, S., Zhang, Z., Zhang, H., Zhang, Y., Wei, S., Ren, L., Wang, C., He, Y., Li, F., and Xiao, F.-Sh., Phase separation of organic/inorganic hybrids induced by calcination: A novel route for synthesizing mesoporous silica and carbon materials, J. Colloid Interface Sci., 2010, vol. 345, pp. 257–261.

    Article  CAS  Google Scholar 

  32. Stefanescu, M., Stoia, M., Stefanescu, O., Davidescu, C., Vlase, G., and Sfirloaga, P., Synthesis and characterization of poly(vinyl alcohol)/ethylene glycol/silica hybrids. Thermal analysis and FT-IR study, Rev. Roum. Chim., 2010, vol. 55, no. 1, pp. 17–23.

    CAS  Google Scholar 

Download references

Funding

The study was carried out under the state task of the Institute of Silicate Chemistry, Russian Academy of Sciences, and was partly financed by President of the Russian Federation grant no. SP-2094.2019 for young scientists and graduate students carrying out promising research and development in priority areas for modernizing the Russian economy for 2019–2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Lyozova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyozova, O.S., Zagrebelny, O.A., Krasnopeeva, E.L. et al. Development and Research on Ion-Conducting Membranes Based on Cross-Linked Polyvinyl Alcohol. Glass Phys Chem 47, 173–180 (2021). https://doi.org/10.1134/S1087659621020061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659621020061

Keywords:

Navigation