Skip to main content
Log in

Cluster Self-Organization of Intermetallic Systems: New Three-Layer Cluster Precursor K136 = 0@Zn12@32(Mg20Zn12)@92(Zr12Zn80) and a New Two-Layer Cluster Precursor K30 = 0@Zn6@Zn24 in the Crystal Structure of Zr6Mg20Zn128-cP154

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Using computer methods (ToposPro software package), the geometrical and topological analysis of the crystal structure of the Zr6Mg20Zn128-cP154 intermetallic compound with cubic cell parameters a = 13.709 Å, V = 2576.42 Å3, and space group Pm-3 is carried out. Two new nanocluster precursors with the ‑43m symmetry are determined: a three-layer K136 nanocluster of the 0@Zn12@32(Mg20Zn12@92(Zr12Zn80) composition with an internal icosahedron 0@Zn12 and 12 Zr atoms and 20 Zn atoms in 60-atomic Zn-shell and a two-layer K30 nanocluster of the 0@Zn6@Zn24 composition with an internal Zn6-octahedron and 24 Zn atoms in the external shell. The symmetrical and topological codes of the self-assembly processes of 3D structures from K136 and K30 nanocluster precursors are reconstructed in the following form: primary chain → microlayer → microframework. The Zn2 dimers are determined as the spacers occupying the voids in the 3D framework from K136 and K30 nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Inorganic Crystal Structure Database (ICSD), Karlsruhe, Germany: Fachinformationszentrum, USA: NIST.

  2. Villars, P. and Cenzual, K., Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC), Materials Park, OH: ASM Int.

  3. Li, M.-R., Deng, D.-W., and Kuo, K.-H., Crystal structure of the hexagonal (Zn, Mg)4 Ho and (Zn, Mg)4 Er, J. Alloys Compd., 2006, vol. 414, pp. 66–72.

    Article  CAS  Google Scholar 

  4. Gomez, C.P., Ohhashi, S., Yamamoto, A., and Tsai, A.P., Disordered structures of the TM-Mg-Zn 1/1 quasicrystal approximants (TM = Hf, Zr, or Ti) and chemical intergrowth, Inorg. Chem., 2008, vol. 47, pp. 8258–8266.

    Article  CAS  Google Scholar 

  5. Lin, Q. and Corbett, J.D., The 1/1 and 2/1 approximants in the Sc–Mg–Zn quasicrystal system: Tricontahedral clusters as fundamental building blocks, J. Am. Chem. Soc., 2006, vol. 128, pp. 13268–13273.

    Article  CAS  Google Scholar 

  6. Berthold, R., Kreine, G, Burkhardt, U., et al., Crystal structure and phase stability of the phi phase in the Al–Mg–Zn system, Intermetallics, 2013, vol. 32, pp. 259–273.

    Article  CAS  Google Scholar 

  7. Bruehne, S., Uhrig, E., Gross, C., and Assmus, W., Local 3D real space atomic structure of the simple icosahedral Ho11Mg15 Zn74 quasicrystal from PDF data, Cryst. Res. Technol., 2003, vol. 38, pp. 1023–1036.

    Article  CAS  Google Scholar 

  8. Bergman, G., Waugh, J.L.T., and Pauling, L., The crystal structure of the metallic phase Mg32 (Al, Zn)49 Al–Zn–Mg alloys, Acta Crystallogr., 1957, vol. 10, pp. 254–259.

    Article  CAS  Google Scholar 

  9. Montagne, P. and Tillard, M., On the adaptability of 1/1 cubic approximant structure in the Mg–Al–Zn system with the particular example of Mg32Al12Zn37, J. Alloys Compd., 2016, vol. 656, pp. 159–165.

    Article  CAS  Google Scholar 

  10. Egusa, D. and Abe, E., The structure of long period stacking/order Mg–Zn–RE phases with extended non-stoichiometry ranges, Acta Mater., 2012, vol. 60, pp. 166–178.

    Article  CAS  Google Scholar 

  11. Kishida, K., Nagai, K., and Matsumoto, A., Crystal structures of highly-ordered long-period stacking-ordered phases with 18R, 14H and 10H-type stacking sequences in the Mg–Zn–Y system, Acta Mater., 2015, vol. 99, pp. 228–239.

    Article  CAS  Google Scholar 

  12. Abe, E., Takakura, H., Singh, A., and Tsai, A.P., Hexagonal superstructures in the Zn–Mg-rare-earth alloys, J. Alloys Compd., 1999, vol. 283, pp. 169–172.

    Article  CAS  Google Scholar 

  13. Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Applied topological analysis of crystal structures with the program package ToposPro, Cryst. Growth Des., 2014, vol. 14, no. 7, pp. 3576–3585. https://topospro.com/.

    Article  CAS  Google Scholar 

  14. Ilyushin, G.D., Modelirovanie protsessov samoorganizatsii v kristalloobrazuyushchikh sistemakh (Modeling Self-Organization Processes in Crystal-Forming Systems), Moscow: Editorial URSS, 2003.

  15. Ilyushin, G.D., Theory of cluster self-organization of crystal-forming systems. Geometrical-topological modeling of nanocluster precursors with a hierarchical structure, Struct. Chem., 2012, vol. 20, no. 6, pp. 975–1043.

    Google Scholar 

  16. Pankova, A.A., Blatov, V.A., Ilyushin, G.D., and Proserpio, D.M., γ-Brass polyhedral core in intermetallics: The nanocluster model, Inorg. Chem., 2013, vol. 52, no. 22, pp. 13094–13107.

    Article  CAS  Google Scholar 

  17. Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Cluster self-organization of intermetallic systems: 0@12(Ga12)@24(Na12Ga12)@72(Rb4Na8Ga60) 108-atom three-layer icosahedral cluster and 0@12(Ga12)@32(Na20Ga12) 44-atom two-layer icosahedral cluster for Rb24Na200Ga696-oF920 crystal structure self-assembly, Glass Phys. Chem., 2019, vol. 45, no. 3, pp. 151–160.

    Article  CAS  Google Scholar 

  18. Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Cluster self-organization of intermetallic systems. new cluster presursor (InNa5)(AuAu5) and primary chain with the 5m symmetry for the self-assembly of the Na32Au44In24-oP100 crystal structure, Glass Phys. Chem., 2019, vol. 45, no. 4, pp. 245–250.

    Article  CAS  Google Scholar 

  19. Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Modeling the processes of self-organization in crystal-forming systems: New two-layer clusters–precursors 0@(Na2Cd6)@(Na12Cd26) and 0@(Na3Cd6)@(Na6Cd35) for the self-assembly of the Na26Cd141-hP168 crystal structure, Glass Phys. Chem., 2019, vol. 45, no. 5, pp. 311–316.

    Article  CAS  Google Scholar 

  20. Shevchenko, V.Ya., Medrish, I.V., Ilyushin, G.D., and Blatov, V.A., From clusters to crystals: Scale chemistry of intermetallics, Struct. Chem., 2019, vol. 30, no. 6, pp. 2015–2027.

    Article  CAS  Google Scholar 

  21. Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Modeling self-organization processes in crystal-forming systems: Suprapolyedic Na18Hg157 precursor clusters for the self-assembly of the Na99Hg468-hP567 crystal structure, Glass Phys. Chem., 2019, vol. 45, no. 6, pp. 399–404.

    Article  CAS  Google Scholar 

  22. Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Modeling self-organization processes in crystal-forming systems: New two-layer cluster–precursor K44 = 0@8(Na2In6)@36(In6Cd6K6)2 for the self-assembly of the K23Na8Cd12In48–hP91 crystal structure, Glass Phys. Chem., 2019, vol. 45, no. 6, pp. 405–411.

    Article  CAS  Google Scholar 

Download references

Funding

The nanocluster analysis was supported by the Russian Science Foundation (project no. 20-13-00054), the analysis of the self-assembly of crystal structure was supported by the Ministry of Education and Science of the Russian Federation through a state assignment of the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences, and the topological analysis was supported by the Ministry of Education and Science of the Russian Federation through state assignment no. 0778-2020-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Shevchenko.

Ethics declarations

The authors declare to have no conflict of interest.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.Y., Blatov, V.A. & Ilyushin, G.D. Cluster Self-Organization of Intermetallic Systems: New Three-Layer Cluster Precursor K136 = 0@Zn12@32(Mg20Zn12)@92(Zr12Zn80) and a New Two-Layer Cluster Precursor K30 = 0@Zn6@Zn24 in the Crystal Structure of Zr6Mg20Zn128-cP154. Glass Phys Chem 46, 455–461 (2020). https://doi.org/10.1134/S108765962006022X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S108765962006022X

Keywords:

Navigation