Skip to main content
Log in

Cluster-Precursors and Self-Assembly Li36Ca4Sn24-oS64 and LiMgEu2Sn3-oS28 Crystalline Structures

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Using computer methods (the ToposPro software package), the combinatorial-topological analysis and modeling of self-assembly of the crystal structure of Li36Ca4Sn24-oS64 (space group (sg) Cmcm, a = 4.640 Å, b = 27.112 Å, c = 11.491 Å, V = 1445.5 Å3) and LiMgEu2Sn3-oS28 (sg Cmcm, a = 4.782 Å, b = 20.717 Å, c = 7.743 Å, V = 767.1 Å3). For the Li36Ca4Sn24 intermetallic compound a new type of 11-atom cluster K11 is installed, formed from double pentagonal rings: K11 = 0@11 (Li5)Ca(Sn5). The maximum cluster symmetry K11 and primary strand of translationally related K11 clusters corresponds to noncrystallographic symmetry 5m. Primary chains of linked K11 clusters preserving only symmetry m are located in the direction [100] and the distance between the centers of the clusters determines the length of vector a = 4.640 Å. The layer is formed when the primary chains located antiparallel are bound. The tetrahedral clusters are located between the primary chains K4 = 0@4 (Li3Sn), forming chains in the direction [100]. The symmetry and topological code of the self-assembly processes of the 3D structure of the LiMgEu intermetallic compound LiMgEu2Sn3-oS28 is reconstructed from clusters K4 = 0@4 (LiMgEuSn) and K3 = 0@3 (Sn2Eu). The layer is formed when the parallel chains of K4 + K3 are bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Inorganic Crystal Structure Database (ICSD), Karlsruhe, Germany: Fachinformationszentrum, USA: NIST.

  2. Villars, P. and Cenzual, K., Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC), Materials Park, OH: ASM Int.

  3. Todorov, I. and Sevov, S.C., Heavy-metal aromatic and conjugated species: Rings, oligomers, andchains of tin in Li(9 – x)EuSn(6 + x), Li(9 – x)CaSn(6 + x), Li5Ca7Sn11, Li6Eu5Sn9, LiMgEu2Sn3, and LiMgSr2Sn3, Inorg. Chem., 2005, vol. 44, pp. 5361–5369.

    Article  CAS  Google Scholar 

  4. Xie, Q.-X. and Nesper, R., Crystal structure of dieuropium monolithium trigermanide, Eu2LiGe3, Z. Kristallogr.—New Cryst. Struct., 2004, vol. 219, pp. 79–80.

    Article  CAS  Google Scholar 

  5. Mueller, W., Schaefer, H., and Weiss, A., Die Struktur der Phasen Ca2LiSi3 und Ca2LiGe3, Zeitschr. Naturforsch., B, 1971, vol. 26, pp. 5–7.

  6. Guo, Sh.-P., You, T., and Bobev, S., Closely related rare-earth metal germanides RE2Li2Ge3 and RE3Li4Ge4 (RE = La–Nd, Sm): Synthesis, crystal chemistry, and magnetic properties, Inorg. Chem., 2012, vol. 51, pp. 3119–3129.

    Article  CAS  Google Scholar 

  7. Xie, Q.-X. and Nesper, R., Crystal structure of dieuropium and distrontium di(lithium, magnesium) trigermanide, M2Li(x)Mg(2 – x)Ge3 (M = Eu, x = 1.16; M = Sr, x = 0.94), Z. Kristallogr. New Cryst. Struct., 2004, vol. 219, pp. 83–84.

    Article  CAS  Google Scholar 

  8. Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Applied topological analysis of crystal structures with the program package ToposPro, Cryst. Growth Des., 2014, vol. 14, no. 7, pp. 3576–3585.

    Article  CAS  Google Scholar 

  9. Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Cluster self-organization of intermetallic systems: New two-layer cluster-precursor K46 = 0 @8(Ca2Hg6)@38(Hg6 + CaHg6)2(Ca6Hg6) for self-assembly of the crystal structure of Ca11Hg54hP65, Glass Phys. Chem., 2020, vol. 46, pp. 1–5.

    Article  CAS  Google Scholar 

  10. Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Cluster self-organization of intermetallic systems: New precursor cluster 0@8(Sr2Au6) for self-assembly of the crystal structure of (Sr2Au6)(Ga3)–hR66, Glass Phys. Chem., 2020, vol. 46, pp. 6–12.

    Article  CAS  Google Scholar 

  11. Ilyushin, G.D., Intermetallic compounds LikMn (M - Ag, Au, Pt, Pd, Ir, Rh): Geometrical and topological analysis, tetrahedral cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 2, pp. 202–210.

    Article  CAS  Google Scholar 

  12. Ilyushin, G.D., Intermetallic compounds NakMn ((M = K, Cs, Ba, Ag, Pt, Au, Zn, Bi, Sb): Geometrical and topological analysis, cluster precursors, and self-assembly of crystal structures, Crystallogr. Rep., 2020, vol. 65, no. 2, pp. 539–545.

    Article  CAS  Google Scholar 

  13. Koval’chuk, M.V., Alekseeva, O.A., Blagov, A.E., and Ilyushin, G.D., Investigation of the structure of crystal-forming solutions of potassium dihydrogen phosphate K(H2PO4) (KDP type) on the basis of modeling precursor clusters and according to small-angle X-ray scattering data, Crystallogr. Rep., 2019, vol. 64, no. 1, pp. 6–10.

    Article  Google Scholar 

  14. Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Symmetrical and topological self-assembly code of the crystalline structure of a new aluminosilicate zeolite ISC-1 from templated t-plg suprapolyhedral precursors, Glass Phys. Chem., 2019, vol. 45, no. 2, pp. 85–90.

    Article  CAS  Google Scholar 

  15. Ilyushin, G.D., Crystal chemistry of lithium intermetallic compounds: A survey, Russ. J. Inorg. Chem., 2018, vol. 63, no. 14, pp. 1786–1799.

    Google Scholar 

  16. Ilyushin, G.D., Modeling of the self-organization prosesses in crystal-forming systems. Tetrahedral metal clusters and the self-assembly of crystal structures of intermetallic compounds, Crystallogr. Rep., 2017, vol. 62, pp. 670–683.

    Article  CAS  Google Scholar 

  17. Ilyushin, G.D., Cluster self-organization of intermetallic systems: 124-atom cluster 0@12@32@80 and 44-atom cluster 0@12@32 for the self-assembly of Li48Na80Ga332-oF920 crystal structure, Crystallogr. Rep., 2019, vol. 64, no. 6, pp. 857–861.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (RFBR no. 19-02-00636) and the Ministry of Science and Higher Education as part of the state order of the Federal Research Center “Crystallography and Photonics,” Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Shevchenko.

Ethics declarations

The authors declare to have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.Y., Blatov, V.A. & Ilyushin, G.D. Cluster-Precursors and Self-Assembly Li36Ca4Sn24-oS64 and LiMgEu2Sn3-oS28 Crystalline Structures. Glass Phys Chem 46, 441–447 (2020). https://doi.org/10.1134/S1087659620060206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659620060206

Keywords:

Navigation