Skip to main content
Log in

Effect of Mixed Iron and Sodium on the Thermal Stability and Spectroscopic Properties of Vanadium Phosphate Glasses

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Two series of vanadium phosphate glasses (1 – x) Na2O – (1 – y) P2O5 – (x + y) V2O5 and Na2O – (1 – x) V2O5xFe2O3 – P2O5 were prepared. Thermal stability and glass structure were studied using differential thermal analysis (DTA), X-ray diffraction (XRD), infrared (IR) and Raman spectroscopy. The glass stability against the crystallization is described using parameters based on the characteristic temperatures. The role of addition vanadium or iron oxides in the glass network was discussed from IR and Raman spectroscopy data. The changes observed in the IR and Raman spectra for both glasses show that vanadium acts as a network former, while, the iron as a network modifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Vinokurov, S.E., Kulyako, Y.M., Slyuntchev, O.M., Rovny, S.I., and Myasoedov, B.F., Low-temperature immobilization of actinides and other components of high-level waste in magnesium potassium phosphate matrices, J. Nucl. Mater., 2009, vol. 385, no. 1, pp. 189–192.

    Article  CAS  Google Scholar 

  2. Kamel, N.E.H., Remil, K., Arabi, M., Kamel, Z., Zahri, A., and Metahri, S., Effect of the synthesis method on the properties of a Pb-bearing (Y–Gd–Ce) rare-earth phosphate used for the confinement of high-level radioactive waste, J. Nucl. Mater., 2010, vol. 401, nos. 1–3, pp. 104–112.

    Article  CAS  Google Scholar 

  3. Oliver, C.J.R.G., Crystallization of iron phosphate glasses containing up to 19 wt % UO2.67, J. Non. Cryst. Solids, 2010, vol. 356, nos. 52–54, pp. 2986–2993.

    Article  CAS  Google Scholar 

  4. Joseph, K., Govindan Kutty, K.V., Chandramohan, P., and Vasudeva Rao, P.R., Studies on the synthesis and characterization of cesium-containing iron phosphate glasses, J. Nucl. Mater., 2009, vol. 384, no. 3, pp. 262–267.

    Article  CAS  Google Scholar 

  5. Day, D.E.Z., Wu Ray, C.S., and Hrma, P., Chemically durable iron phosphate glass wasteforms, J. Non. Cryst. Solids, 1998, vol. 241, no. 1, pp. 1–12.

    Article  CAS  Google Scholar 

  6. Guo, G. and Chen, Y., Thermal analysis and infrared measurements of a lead–barium–aluminum phosphate glass, J. Non. Cryst. Solids, 1996, vol. 201, no. 3, pp. 262–266.

    Article  CAS  Google Scholar 

  7. Sakurai, Y., Correlation between microstructure and electrochemical behavior of amorphous V2O5–P2O5 in lithium cells, J. Electrochem. Soc., 1988, vol. 135, no. 4, p. 791.

    Article  CAS  Google Scholar 

  8. Saad, M., Stambouli, W., Sdiri, N., and Elhouichet, H., Effect of mixed sodium and vanadium on the electric and dielectric properties of zinc phosphate glass, Mater. Res. Bull., 2017, vol. 89, pp. 224–231.

    Article  CAS  Google Scholar 

  9. Vedeanu, N.S., Cozar, I.B., Stanescu, R., Stefan, R., Vodnar, D., and Cozar, O., Structural investigation of V2O5/P2O5/K2O glass system with antibacterial potential, Bull. Mater. Sci., 2016, vol. 39, no. 3, pp. 697–702.

    Article  CAS  Google Scholar 

  10. Garbarczyk, J.E., Wasiucionek, M., Jozwiak, P., Tykarski, L., and Nowiński, J.L., Studies of Li2O–V2O5–P2O5 glasses by DSC, EPR and impedance spectroscopy, Solid State Ionics, 2002, vols. 154–155, pp. 367–373.

    Article  Google Scholar 

  11. Tricot, G., Montagne, L., Delevoye, L., Palavit, G., and Kostoj, V., Redox and structure of sodium-vanadophosphate glasses, J. Non. Cryst. Solids, 2004, vol. 345–346, pp. 56–60.

    Article  CAS  Google Scholar 

  12. Jozwiak, P. and Garbarczyk, J.E., Mixed electronic-ionic conductivity in the glasses of the Li2O–V2O5–P2O5 system, Solid State Ionics, 2005, vol. 176, nos. 25–28, pp. 2163–2166.

    Article  CAS  Google Scholar 

  13. Ungureanu, M.-C., Lévy, M., and Souquet, J.-L., Ionic and electronic conductivity of glasses in the P2O5–V2O5–Na2O system, Ceram. Silikaty, 2000, vol. 44, no. 3, pp. 81–85.

    CAS  Google Scholar 

  14. Garbarczyk, J.E., Machowski, P., Wasiucionek, M., Tykarski, L., Bacewicz, R., and Aleksiejuk, A., Studies of silver-vanadate-phosphate glasses by Raman, EPR and impedance spectroscopy methods, Solid State Ionics, 2000, vol. 272, pp. 53–59.

    Article  CAS  Google Scholar 

  15. Magdas, D.A., Vedeanu, N.S., and Toloman, D., Study on the effect of vanadium oxide in calcium phosphate glasses by Raman, IR and UV-vis spectroscopy, J. Non. Cryst. Solids, 2015, vol. 428, pp. 151–155.

    Article  CAS  Google Scholar 

  16. Vedeanu, N., Stanescu, R., Filip, S., Ardelean, I., and Cozar, O., IR and ESR investigations on V2O5–P2O5–BaO glass system with opto-electronic potential, J. Non. Cryst. Solids, 2012, vol. 358, no. 16, pp. 1881–1885.

    Article  CAS  Google Scholar 

  17. Guo, G. and Chen, Y., Thermal analysis and infrared measurements of a lead–barium–aluminum phosphate glass, J. Non. Cryst. Solids, 1996, vol. 201, no. 3, pp. 262–266.

    Article  CAS  Google Scholar 

  18. Dutta, B., Fahmy, N.A., and Pegg, I.L., Effect of mixed transition-metal ions in glasses. Part III: The P2O5–V2O5–MnO system, J. Non. Cryst. Solids, 2006, vol. 351, pp. 1958–1966.

    Article  CAS  Google Scholar 

  19. Nascimento, M.L.F., Souza, L.A., Ferreira, E.B., and Zanotto, E.D., Can glass stability parameters infer glass forming ability, J. Non. Cryst. Solids, 2005, vol. 351, nos. 40–42, pp. 3296–3308.

    Article  CAS  Google Scholar 

  20. Arstila, H., Tukiainen, M., Taipale, S., Kellomaki, M., and Hupa, L., Liquidus temperatures of bioactive glasses, Adv. Mater. Res., 2008, vols. 39–40, pp. 287–292.

    Article  Google Scholar 

  21. Ferreira, E.B., Zanotto, E.D., Feller, S., Lodden, G., Banerjee, J., Edwards, T., and Affatigato, M., Critical analysis of glass stability parameters and application to lithium borate glasses, J. Am. Ceram. Soc., 2011, vol. 94, no. 11, pp. 3833–3841.

    Article  CAS  Google Scholar 

  22. Fokin, V.M., Reis, R.M.C.V., Abyzov, A.S., Chinaglia, C.R., Schmelzer, J.W.P., and Zanotto, E.D., Non-stoichiometric crystallization of lithium metasilicate-calcium metasilicate glasses. Part 2: Effect of the residual liquid, J. Non. Cryst. Solids, 2013, vol. 379, pp. 131–144.

    Article  CAS  Google Scholar 

  23. McAdam, A., Jost, K.H., and Beagley, B., Refinement of the structure of sodium kurrol salt (NaPO3)x, type A, Acta Crystallogr., Sect. B, 1968, vol. 24, no. 12, pp. 1621–1622.

    Article  CAS  Google Scholar 

  24. Kinomura, N., Matsui, N., Kumada, N., and Muto, F., Synthesis and crystal structure of NaV3P3P12: A stuffed structure of α-CrPO4, J. Solid State Chem., 1989, vol. 79, pp. 232–237.

    Article  CAS  Google Scholar 

  25. Lyutsko, V., Romanii, T., and Selevich, A., Double vanadium(III) triphosphates M2VP3O10nH2O (M—alkali metal), Russ. J. Inorg. Chem., 1989, vol. 34, p. 1155.

    Google Scholar 

  26. Haddad, A. and Jouini, T., J. Solid State Chem., 1994, vol. 112, p. 218.

    Article  CAS  Google Scholar 

  27. Pauling, L., The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms, J. Am. Chem. Soc., 1932, vol. 54, pp. 3570–3582.

    Article  CAS  Google Scholar 

  28. Drake, C.F., Stephan, J.A., and Yates, B., The densities of V2O5/P2O5 glasses and the oxygen molar volume, J. Non. Cryst. Solids, 1978.

  29. Sharma, B.I. and Srinivasan, A., Differential scanning calorimetry studies on V2O5–CaO–P2O5 glasses, Mater. Chem. Phys., 2003, vol. 82, no. 3, pp. 887–891.

    Article  CAS  Google Scholar 

  30. Dutta, B., Fahmy, N.A., and Pegg, I.L., Effect of mixed transition-metal ions in glasses. I. The P2O5–V2O5–Fe2O3 system, J. Non. Cryst. Solids, 2005, vol. 351, nos. 24–26, pp. 1958–1966.

    Article  CAS  Google Scholar 

  31. Cooper, E.I. and Angell, C.A., Far-IR transmitting, cadmium iodide-based glasses, J. Non. Cryst. Solids, 1983, vol. 56, nos. 1–3, pp. 75–80.

    Article  CAS  Google Scholar 

  32. Drexhage, M.G., Ei-Bayoumi, O.H., Lipson, H., Moynihan, C.T., Bruce, A.J., Lucas, J., and Fonteneau, G., Comparative study of BaF2/ThF4 glasses containing YF3, YbF3 and LuF3, J. Non. Cryst. Solids, 1983, vol. 56, nos. 1–3, pp. 51–56.

    Article  CAS  Google Scholar 

  33. Kozmidis-Petrović, A.F., Sensitivity of the Hruby, Lu–Liu, Fan, Yuan, and Long glass stability parameters to the change of the ratios of characteristic temperatures T x/T g and T m/T g, Thermochim. Acta, 2010, vol. 510, nos. 1–2, pp. 137–143.

    Article  CAS  Google Scholar 

  34. Garbarczyk, J.E., Wasiucionek, M., Machowski, P., and Jakubowski, W., Transition from ionic to electronic conduction in silver—vanadate—phosphate glasses, Solid State Ionics, 1999, vol. 119, pp. 9–14.

    Article  CAS  Google Scholar 

  35. Michalski, P.P., Nowinski, J.L., Pietrzak, T.K., Wasiucionek, M., Garbarczyk, J.E., and Zalewska, A., Preparation and characterization of Li2O–FeO–V2O5–P2O5 glasses and related nanomaterials, Proc. Eng., 2014, vol. 98, pp. 78–85.

    Article  CAS  Google Scholar 

  36. Parsons, A.J. and Rudd, C.D., Glass forming region and physical properties in the system P2O5–Na2O–Fe2O3, J. Non. Cryst. Solids, 2008, vol. 354, nos. 40–41, pp. 4661–4778.

    Article  CAS  Google Scholar 

  37. Hrubý, A., Evaluation of glass-forming tendency by means of DTA, Czechoslov. J. Phys., 1972, vol. B 22, pp. 1187–1193.

  38. Ma, L., Brow, R.K., Ghussn, L., and Schlesinger, M.E., Thermal stability of Na2O–FeO–Fe2O3–P2O5 glasses, J. Non. Cryst. Solids, 2015, vol. 409, pp. 131–138.

    Article  CAS  Google Scholar 

  39. Zhang, L., Ghussn, L., Schmitt, M.L., Zanotto, E.D., Brow, R.K., and Schlesinger, M.E., Thermal stability of glasses from the Fe4(P2O7)3–Fe(PO3)3 system, J. Non. Cryst. Solids, 2010, vol. 356, pp. 2965–2968.

    Article  CAS  Google Scholar 

  40. Zhang, L., Brow, R.K., Schlesinger, M.E., Ghussn, L., and Zanotto, E.D., Glass formation from iron-rich phosphate melts, J. Non. Cryst. Solids, 2010, vol. 356, nos. 25–27, pp. 1252–1257.

    Article  CAS  Google Scholar 

  41. Kim, J.K., Senthilkumar, B., Sahgong, S.H., Kim, Kim, J.H., Chi, M., and Kim, Y., New chemical route for the synthesis of β-Na0.33V2O5 and its fully reversible Li intercalation, ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 12, pp. 7025–7032.

    Article  CAS  Google Scholar 

  42. Pouchard, M., Bull. Soc. Chim. Fr., 1967, vol. 11, p. 4343.

    Google Scholar 

  43. Vedeanu, N., Stanescu, R., Filip, S., Ardelean, I., and Cozar, O., IR and ESR investigations on V2O5–P2O5–BaO glass system with opto-electronic potential, J. Non. Cryst. Solids, 2012, vol. 358, no. 16, pp. 1881–1885.

    Article  CAS  Google Scholar 

  44. Shih, P.Y., Ding, J.Y., and Lee, S.Y., 31P MAS–NMR and FTIR analyses on the structure of CuO-containing sodium poly- and meta-phosphate glasses, Mater. Chem. Phys., 2003, vol. 80, no. 2, pp. 391–396.

    Article  CAS  Google Scholar 

  45. Omrani, R.O., Krimi, S., Videau, J.J., Khattech, I., El Jazouli, A., and Jemal, M., Structural and thermochemical study of Na2O–ZnO–P2O5 glasses, J. Non. Cryst. Solids, 2014, vol. 390, pp. 5–12.

    Article  CAS  Google Scholar 

  46. Zhang, L. and Brow, R.K., A Raman study of iron–phosphate crystalline compounds and glasses, J. Am. Ceram. Soc., 2011, vol. 94, no. 9, pp. 3123–3130.

    Article  CAS  Google Scholar 

  47. Lu, M., Wang, F., Chen, K., Dai, Y., Liao, Q., and Zhu, H., The crystallization and structure features of barium-iron phosphate glasses, Spectrochim. Acta, Part A, 2015, vol. 148, pp. 1–6.

    Article  CAS  Google Scholar 

  48. Lai, Y., Liang, X., Yang, S., Liu, P., Zeng, Y., and Hu, C., Raman and FTIR spectra of CeO2 and Gd2O3 in iron phosphate glasses, J. Alloys Compd., 2014, vol. 617, pp. 597–601.

    Article  CAS  Google Scholar 

  49. Magdas, D.A., Cozar, O., Chis, V., Ardelean, I., and Vedeanu, N., The structural dual role of Fe2O3 in some lead–phosphate glasses, Vibr. Spectrosc., 2008, vol. 48, no. 2, pp. 251–254.

    Article  CAS  Google Scholar 

  50. Vedeanu, N., Cozar, O., Stanescu, R., Cozar, I.B., and Ardelean, I., Structural investigation of new vanadium–bismuth–phosphate glasses by IR and ESR spectroscopy, J. Mol. Struct., 2013, vol. 1044, pp. 323–327.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are very grateful to the materials and energy research center for helping with the Raman experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Moutataouia.

Ethics declarations

The authors declare to have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moutataouia, M., Iaataren, J. & Lamire, M. Effect of Mixed Iron and Sodium on the Thermal Stability and Spectroscopic Properties of Vanadium Phosphate Glasses. Glass Phys Chem 46, 497–509 (2020). https://doi.org/10.1134/S1087659620060164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659620060164

Keywords:

Navigation