Skip to main content
Log in

Comparative Study of Internal Mechanical Stresses in the Structures of Montmorillonite and Halloysite

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Obtaining nanoscale tubes and scrolls is of fundamental and practical interest for science. In this study, the ability of montmorillonite and halloysite monolayers to curl into nanoscale scrolls is investigated using the electron density functional theory method on the example of studying the internal mechanical stresses in them. As a result of the study, it is revealed that mechanical stresses are present in both structures; however, they can be caused by the twisting of only the halloysite layers, due to the peculiarities of the structure. The mechanical stresses in montmorillonite are roughly double those in halloysite. However, the symmetrical structure of montmorillonite does not favor the formation of nanoscale scrolls and tubes, in contrast to the asymmetric structure of halloysite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Spepi, A., Experimental and DFT characterization of halloysite nanotubes loaded with salicylic acid, J. Phys. Chem. C, 2016, vol. 120, no. 47, pp. 26759–26769.

    Article  CAS  Google Scholar 

  2. Yuan, P., Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane, J. Phys. Chem. C, 2008, vol. 112, no. 40, pp. 15742–15751.

    Article  CAS  Google Scholar 

  3. Yuan, P., Tan, D., and Annabi-Bergaya, F., Properties and applications of halloysite nanotubes: Recent research advances and future prospects, Appl. Clay Sci., 2015, vols. 112–113, pp. 75–93.

    Article  Google Scholar 

  4. Viseras, C., Cerezo, P., Sanchez, R., Salcedo, I., and Aguzzi, C., Current challenges in clay minerals for drug delivery, Appl. Clay Sci., 2010, vol. 48, no. 3, pp. 291–295.

    Article  CAS  Google Scholar 

  5. Awad, M.E., López-Galindo, A., Setti, M., El-Rahmany, M.M., and Iborra, C.V., Kaolinite in pharmaceutics and biomedicine, Int. J. Pharm., 2017, vol. 533, no. 1, pp. 34–48.

    Article  CAS  Google Scholar 

  6. Yendluri, R., Otto, D.P., de Villiers, M.M., Vinokurov, V., and Lvov, Y.M., Application of halloysite clay nanotubes as a pharmaceutical excipient, Int. J. Pharm., 2017, vol. 521, nos. 1–2, pp. 267–273.

    Article  CAS  Google Scholar 

  7. Demichelis, R., de la Pierre, M., Mookherjee, M., Zicovich-wilson, C.M., and Orlando, R., Serpentine polymorphism: A quantitative insight from first-principles calculations, CrystEngComm, 2016, vol. 18, no. 23, pp. 44112–4419.

    Article  Google Scholar 

  8. D’Arco, P. Noel, Y. Demichelis, R., and Dovesi, R., Single-layered chrysotile nanotubes: A quantum mechanical ab initio simulation, J. Chem. Phys., 2009, vol. 131, no. 20.

  9. Zartman, G.D., Liu, H., Akdim, B., Pachter, R., and Heinz, H., Nanoscale tensile, shear, and failure properties of layered silicates as a function of cation density and stress, J. Phys. Chem. C, 2010, vol. 114, no. 4, pp. 1763–1772.

    Article  CAS  Google Scholar 

  10. Ryan, P.C., Huertas, F.J., Hobbs, F.W.C., and Pincus, L.N., Kaolinite and halloysite derived from sequential transformation of pedogenic smectite and kaolinite-smectite in a 120 ka tropical soil chronosequence, Clays Clay Miner., 2016, vol. 64, no. 5, pp. 639–667.

    Article  CAS  Google Scholar 

  11. Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, no. 18, pp. 3865–3868.

    Article  CAS  Google Scholar 

  12. Soler, J.M., The SIESTA method for ab initio order-N materials simulation, J. Phys. Chem., 1993, vol. 97, no. 11, pp. 8617–8624.

    Article  Google Scholar 

  13. Sánchez-Portal, D., Junquera, J., Paz, Ó., and Artacho, E., Numerical atomic orbitals for linear-scaling calculations, Phys. Rev. B, 2001, vol. 64, no. 23, pp. 1–9.

    Google Scholar 

  14. Pack, J.D. and Monkhorst, H.J., Special points for Brillouin zone integrations, Phys. Rev. B, 1977, vol. 16, no. 4, pp. 1748–1749.

    Article  Google Scholar 

  15. Postnikov, A. http://www.home.uni-osnabrueck.de/apostnik/download.html.

  16. Wu, Y., Zhang, Y., Ju, J., Yan, H., Huang, X., and Tan, Y., Advances in halloysite nanotubes-polysaccharide nanocomposite preparation and applications, Polymers (Basel), 2019, vol. 11, no. 6.

  17. Gaur, S.S., Dhar, P., Narendren, S., Sakurai, S., Kumar, A., and Katiyar, V., Fabrication and characterization of clay nanoscrolls and stable zerovalent iron using montmorillonite, Appl. Clay Sci., 2020, vol. 193, p. 105670.

    Article  CAS  Google Scholar 

  18. Fu, Y.T., Zartman, G.D., Yoonessi, M., Drummy, L.F., and Heinz, H., Bending of layered silicates on the nanometer scale: Mechanism, stored energy, and curvature limits, J. Phys. Chem. C, 2011, vol. 115, no. 45, pp. 22292–22300.

    Article  CAS  Google Scholar 

  19. Heinz, H., Clay minerals for nanocomposites and biotechnology: Surface modification, dynamics and responses to stimuli, Clay Miner., 2012, vol. 47, no. 2, pp. 205–230.

    Article  CAS  Google Scholar 

  20. Sato, H., Yamagishi, A., and Kawamura, K., Molecular simulation for flexibility of a single clay layer, J. Phys. Chem. B, 2001, vol. 105, no. 33, pp. 7990–7997.

    Article  CAS  Google Scholar 

  21. Ferreira, C.R., Pulcinelli, S.H., Scolfaro, L., and Borges, P.D., Structural and electronic properties of iron-doped sodium montmorillonite clays: A first-principles DFT study, ACS Omega, 2019, vol. 4, no. 11, pp. 14369–14377.

    Article  CAS  Google Scholar 

  22. Li, H., Bian, L., Dong, F., Li, W., Song, M., and Nie, J., Applied clay science DFT and 2D-CA methods unravelling the mechanism of interfacial interaction between amino acids and Ca-montmorillonite, Appl. Clay Sci., 2019, vol. 183, p. 105356.

    Article  CAS  Google Scholar 

  23. Jain, A., Commentary: The materials project: A materials genome approach to accelerating materials innovation, APL Mater., 2013, vol. 1, no. 1, p. 011002.

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 18-03-00156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Arsent’ev.

Ethics declarations

The authors declare to have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arsent’ev, M.Y., Golubeva, O.Y. Comparative Study of Internal Mechanical Stresses in the Structures of Montmorillonite and Halloysite. Glass Phys Chem 46, 598–604 (2020). https://doi.org/10.1134/S1087659620060036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659620060036

Keywords:

Navigation