Skip to main content
Log in

Cluster Self-Organization of Intermetallic Systems: Three-Layer Icosahedral Nanoclusters K132 = 0@12(In6Tl6)@30(In6Na6K18)@90(In72Na12K6) and K116 = 0@12(In6Tl6)@26(In12K14)@78(In36Tl20K12) for the Self-Assembly of the K52Na12Tl36In122-hP224 Crystalline Structure

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The TOPOS software package is used for the combinatorial topological analysis and simulation of the self-assembly of the K52Na12Tl36In122-hP224 (spatial group P-3m1, a = b = 16.909, c = 28.483 Å, V = 7 052 Å3) crystalline structure. A total of 1649 variants of the cluster representation of a 3D atomic lattice with the number of structural units ranging from 4 to 10 are found. Two frame-forming three-layer icosahedral nanoclusters are detected: K132 and K116 with symmetry g = –3m and a diameter of 17 Å. The chemical composition of the shells of the three-layer 132-atom nanocluster K132 is 0@12(In6Tl6)@30(In6Na6K18)@90(In72Na12K6) and that of the 116-atom nanocluster K116 is (0@12(In6Tl6)@26(In12K14)@78(In36Tl20K12). The symmetrical and topological code of the self-assembly of the 3D Na12K52Tl36In122 structure from the precursor K132 and K116 nanoclusters is reconstructed in the following form: primary chain → layer → frame. The framework’s voids are occupied by spacer atoms K and Tl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Villars, P. and Cenzual, K., Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC), Materials Park, OH: ASM Int., 2018.

    Google Scholar 

  2. Inorganic Crystal Structure Database (ICSD), Karlsruhe, Germany: Fachinformationszentrum; USA: Natl. Inst. Standard Technol.

  3. Somer, M., Carrillo-Cabrera, W., Peters, E.M., Peters, K., and von Schnering, H.G., Crystal structure of sodium potassium antimonidetriantimonidoaluminate, Na3K6Sb(AlSb3), Z. Kristallogr., 1995, vol. 210, pp. 527–527.

    Article  CAS  Google Scholar 

  4. Somer, M., Carrillo-Cabrera, W., Peters, E.M., Peters, K., and Vonschnering, H.G., Crystal structure of sodium potassium antimonidetriantimonidogallate, K6Na3Sb(GaSb3), Z. Kristallogr., 1995, vol. 210, pp. 143–143.

    Article  CAS  Google Scholar 

  5. Kim, S.-J., Kraus, F., and Faessler, T.F., Na6ZnSn2, Na4.24K1.76ZnSn2, and Na20Zn8Sn11: Three intermetallic structures containing the linear {Sn–Zn–Sn}6-unit, J. Am. Chem. Soc., 2009, vol. 131, pp. 1469–1478.

    Article  CAS  Google Scholar 

  6. Eisenmann, B. and Klein, J.D., Zintl-anionen [Sn2As6]10– und [Sn2Sb6]10– in alkaliverbindungen, Z. Kristallogr., 1991, vol. 196, pp. 213–229.

    Article  CAS  Google Scholar 

  7. Tillard-Charbonnel, M.M., Belin, C.H.E., Manteghetti, A.P., and Flot, D.M., Heteroatomic centering of icosahedral clusters. Crystal and electronic structure of the K6(NaCd)2Tl12Cd compound containing the not-so-naked Tl12Cd12-polyanion, Inorg. Chem., 1996, vol. 35, pp. 2583–2589.

    Article  CAS  Google Scholar 

  8. Dong, Z-C. and Corbett, J.D., Na14K6Tl18M (M = Mg, Zn, Cd, Hg) and Na13.5 Sm0.5K6Tl18Na: Novel octahedral and centered icosahedral cluster phases related to the Mg2Zn11-type structure, Angew. Chem., Int. Ed. Engl., 1996, vol. 36, pp. 1006–1008.

    Article  Google Scholar 

  9. Asbrand, M., Eisenmann, B., and Engelhardt, H., Dimere und polymere Pnictidostannat(IV)-anionen-darstellung und kristallstrukturen von Na2K3[SnP3], Na2Cs3[SnP3] und Na2K3[SnBi3], Zeitschr. Naturforsch., B, 1998, vol. 53, pp. 405–410.

  10. Flot, D.M., Tillard-Charbonnel, M., and Belin, C., Na8K23Cd12In48: A zintl phase containing icosahedral and triangular indium units and displaying a remarkable condensed metal fullarene stuffed with a tubular cluster. Synthesis, crystal, and electronic structures, J. Am. Chem. Soc., 1996, vol. 118, pp. 5229–5235.

    Article  CAS  Google Scholar 

  11. Huang, D. and Corbett, J.D., Na9K16Tl18Cd3: A novel phase containing (Tl8Cd3)(–) and Tl5(7) clusters, Inorg. Chem., 1999, vol. 38, pp. 316–320.

    Article  CAS  Google Scholar 

  12. Huang, D., Dong, Zh.-ch., and Corbett, J.D., Na12K38Tl48Au2: A metallic zintl phase with naked icosahedral fragments Tl7(7–) and Tl9(9–) plus Au(–), Inorg. Chem., 1998, vol. 37, pp. 5881–5886.

    Article  CAS  Google Scholar 

  13. Flot, D.M., Tillard Charbonnel, M.M., and Belin, C., Crystal structure of sodium potassium thallide indide, Na6K26In42 – x(InyTl38 – y) (x = 1.08; y = 20.12), Z. Kristallogr. (New Struct.), 1998, vol. 213, pp. 225–226.

  14. Flot, D., Vincent, L., Tillard-Charbonnel, M., and Belin, C., Crystal structure of sodium potassium cadmium gallium, Na21K14Cd17Ga84, Z. Kristallogr.(New Struct.), 1997, vol. 212, pp. 509–510.

    Google Scholar 

  15. Shevchenko, V.Ya., Blatov, V.A., and Ilyushin, G.D., Modeling self-organization processes in crystal-forming systems: New two-layer cluster–precursor K44 = 0@8(Na2In6)@36(In6Cd6K6)2 for the self-assembly of the K23Na8Cd12In48–hP91 crystal structure, Glass Phys. Chem., 2019, vol. 45, no. 6, pp. 405–411.

    Article  CAS  Google Scholar 

  16. Blatov, V.A., Shevchenko, A.P., and Proserpio, D.M., Applied topological analysis of crystal structures with the program package ToposPro, Cryst. Growth Des., 2014, vol. 14, pp. 3576–3585.

    Article  CAS  Google Scholar 

  17. Ilyushin, G.D., Modelirovanie protsessov samoorganizatsii v kristalloobrazuyushchikh sistemakh (Modeling of Self-Organization Processes in Crystal-Forming Systems), Moscow: Editorial URSS, 2003.

  18. Ilyushin, G.D., Modeling of the self-organization processes in crystal-forming systems. tetrahedral metal clusters and the self-assembly of crystal structures of intermetallic compounds, Crystallogr. Rep., 2017, vol. 62, pp. 670–683.

    Article  CAS  Google Scholar 

  19. Ilyushin, G.D., Symmetry and topology code of the cluster self-assembly of intermetallic compounds \({\text{A}}_{2}^{{[16]}}{\text{B}}_{4}^{{[12]}}\) of the friauf families Mg2Cu4 and Mg2Zn4, Crystallogr. Rep., 2018, vol. 63, pp. 543–552.

    Article  CAS  Google Scholar 

  20. Blatov, V.A., Ilyushin, G.D., and Proserpio, D.M., New types of multishell nanoclusters with a Frank-Kasper polyhedral core in intermetallics, Inorg. Chem., 2011, vol. 50, pp. 5714–5724.

    Article  CAS  Google Scholar 

  21. Ilyushin, G.D., Modeling of self-organization processes in crystal-forming systems: Symmetry and topology code for the cluster self-assembly of crystal structures of intermetallic compounds, Russ. J. Inorg. Chem., 2017, vol. 62, pp. 1730–1769.

    Article  CAS  Google Scholar 

  22. Pankova, A.A., Akhmetshina, T.G., Blatov, V.A., and Proserpio, D.M., A collection of topological types of nanoclusters and its application to icosahedra-based intermetallics, Inorg. Chem., 2015, vol. 54, no. 13, pp. 6616–6630.

    Article  CAS  Google Scholar 

  23. Ilyushin, G.D., Crystal chemistry of lithium intermetallic compounds: A survey, Russ. J. Inorg. Chem., 2018, vol. 63, no. 14, pp. 1786–1799.

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education as part of a state contract of the Crystallography and Photonics Center, Russian Academy of Sciences and the Russian Foundation for Basic Research (project no. 19-02-00636).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Shevchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Moshkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, V.Y., Blatov, V.A. & Il’yushin, G.D. Cluster Self-Organization of Intermetallic Systems: Three-Layer Icosahedral Nanoclusters K132 = 0@12(In6Tl6)@30(In6Na6K18)@90(In72Na12K6) and K116 = 0@12(In6Tl6)@26(In12K14)@78(In36Tl20K12) for the Self-Assembly of the K52Na12Tl36In122-hP224 Crystalline Structure. Glass Phys Chem 46, 195–202 (2020). https://doi.org/10.1134/S1087659620030116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659620030116

Navigation