Skip to main content
Log in

Enhancement of Optical Emission and Dielectric Properties of Eu3+-Doped Na2O–ZnO–TeO2 Glass Material

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Europium doped Na2O–ZnO–TeO2 glasses were prepared by conventional melt technique. The differential thermal analysis and thermal gravimetric analysis confirmed the formation of glass with glass transition temperature about 446°C for all the doped glasses. The X-ray diffraction spectra revealed that these glasses were amorphous in nature. The absorption and emission spectra of these prepared samples were characterized by the UV-VIS spectroscopy and photoluminescence studies. It was found that the band gap energy of these glasses decreases rapidly (2.86–1.43 eV) with the increase of doping concentration. Optical properties of the samples had shown the enhanced luminescence at 537 nm (5D07F0), at 591 nm (5D07F1) and at 614 nm (5D07F2) due to doping of europium (Eu3+). The emission cross-section for the transition 5D07F2 was also estimated. The dielectric constant of glass samples were studied for different frequencies. The conductivity of the samples was measured and suggested the Arrhenius mechanism of conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Jha, A., Richards, B., Jose, G., Fernandez, T.T., Joshi, P., Jiang, X., and Lousteau, J., Rare-earth ion doped TeO2 and GeO2 glasses as laser materials, Prog. Mater. Sci., 2012, vol. 57, pp. 1426–1491.

    Article  CAS  Google Scholar 

  2. Wagh, A., Raviprakash, Y., Upadhyaya, V., and Kamath, S.D., Composition dependent structural and optical properties of PbF2–TeO2–B2O3–Eu2O3 glasses, Spectrosc. Acta, 2015, vol. 151, pp. 696–706.

    Article  CAS  Google Scholar 

  3. Jha, A., Richards, B.D.O., Jose, G., Fernandez, T.T., Hill, C.J., Lousteau, J., and Joshi, P., Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications, Int. Mater. Rev., 2012, vol. 57, no. 6, pp. 357–382.

    Article  CAS  Google Scholar 

  4. Begum, A. and Rajendran, V., Structure investigation of TeO2–BaO glass employing ultrasonic study, Mater. Lett., 2007, vol. 61, pp. 2143–2146.

    Article  CAS  Google Scholar 

  5. Yakhind, A.K., Tellurite glasses, J. Am. Ceram. Soc., 1966, vol. 49, pp. 670–675.

    Article  Google Scholar 

  6. Neov, S., Kozhukharov, V., Gerasimove, I., Krezhov, K., and Sidzhimov, B., A model for structural recombination in tellurite glasses, J. Phys. C: Solid State Phys., 1979, vol. 12, pp. 2475–2485.

    Article  CAS  Google Scholar 

  7. Neov, S., Gerasimove, I., Krezhov, K., Sidzhimov, B., and Kozhukharov, V., Atomic arrangement in tellurite glasses studied by neutron diffraction, Phys. Status Solidi, 1978, vol. 47, pp. 743–750.

    Article  CAS  Google Scholar 

  8. Roychoudhury, P., Batabyal, S.K., Paul, A., Basu, C., Mukherjee, S., and Goswami, K., Acoustic and optical properties of (Li2O)0.2 – x(Na2O)x(TeO2)0.8 glasses, J. Appl. Phys., 2012, vol. 92, no. 7, pp. 3530–3539.

    Article  Google Scholar 

  9. Wang, J.S., Vogel, E.M., and Snitzer, E., Tellurite glass: A new candidate for fiber devices, Opt. Mater., 1994, vol. 3, pp. 187–203.

    Article  CAS  Google Scholar 

  10. Almeida, R.D., Silva, D., Kassab, L., and Araujo, C., Eu3+ luminescence in tellurite glasses with gold nanostructures, Opt. Commun., 2008, vol. 281, pp. 108–112.

    Article  Google Scholar 

  11. Sazali, E.S., Sahar, M.R., and Ghoshal, S.K., Influence of europium ion on structural, mechanical and luminescence behavior of tellurite nanoglass, J. Phys.: Conf. Ser., 2013, vol. 431, pp. 1–8.

    Google Scholar 

  12. Ghorbel, K., Litaiem, H., Ktari, L., Garcia-Granda, S., and Dammak, M., Ionic-protonic conduction analysis and dielectric relaxation behavior of the rubidium ammonium arsenate tellurate, Ionics, 2015, vol. 22, pp. 251–260.

    Article  Google Scholar 

  13. Cordfunke, E.H.P. and Smit-Groen,V.M., A DSC study of the phase diagram of the system TeO–CsTeO3, Thermochem. Acta, 1984, vol. 80, pp. 181–183.

    Article  CAS  Google Scholar 

  14. Khalil, M.I., Al-Qunaibit, M.M., Al-zahem, A.M., and Labis, J.P., Synthesis and characterization of ZnO nanoparticles by thermal decomposition of a curcumin zinc complex, Arab. J. Chem., 2014, vol. 7, pp. 1178–1184.

    Article  CAS  Google Scholar 

  15. Alazoumia, S.H., Aziza, S.A., Mallawanyc, R.E., Aliyud, U.S., Kamaria, H.M., Zaida, M.H.M.M., Matori, K.A., and Ushaha, A., Optical properties of zinc lead tellurite glasses, Res. Phys., 2018, vol. 9, pp. 1371–1376.

    Google Scholar 

  16. Lakshminarayana, G. and Buddhudu, S., Spectral analysis of Eu3+ and Tb3+:B2O3–ZnO–PbO glasses, Mater. Chem., 2007, vol. 102, pp. 181–186.

    CAS  Google Scholar 

  17. Babu, P. and Jayasankar, C.K., Lithium borate and lithium fluoroborate glasses, Phys. B (Amsterdam, Neth.), 2000, vol. 279, pp. 262–281.

    Google Scholar 

  18. Sidek, H.A.A., Rosmawati, S., Talib, Z.A., Halimah, M.K., and Daud, W.M., Synthesis and optical properties of ZnO–TeO2 glass system, Am. J. Appl. Sci., 2009, vol. 6, no. 8, pp. 1489–1494.

    Article  CAS  Google Scholar 

  19. Raju, K.V., Sailaja, S., Raju, C.N., and Reddy, B.S., Optical characterization of Eu3+ and Tb3+ ions doped cadmium lithium alumino fluoro boro tellurite glasses, Spectrochim. Acta, A, 2011, vol. 79, pp. 87–91.

    Article  Google Scholar 

  20. Kassab, L.R.P., De Almeida, R., Da Silva, D., De Assumpcao, T.A.A., and De Araujo, C.B., Enhanced luminescence of Tb3+/Eu3+ doped tellurium oxide glass containing silver nanostructures, J. Appl. Phys., 2009, vol. 105, no. 103505, pp. 1–3.

  21. Venkatramu, V., Babu, P., and Jayasankar, C.K., Fluorescence properties of Eu3+ ions doped borate and fluoroborate glasses containing lithium, zinc and lead, Spectrochim. Acta, A, 2006, vol. 63, pp. 276–281.

    Article  CAS  Google Scholar 

  22. Kumar, K.U., Babu, S.S., Rao, C.S., and Jayasankar, C.K., Optical and fluorescence spectroscopy of Eu2O3-doped P2O5–K2O–KF–MO–Al2O3 (M = Mg, Sr and Ba) glasses, Opt. Commun., 2011, vol. 284, pp. 2909–2914.

    Article  CAS  Google Scholar 

  23. Mandal, D., Banerjee, H.D., Goswami, M.L.N., and Acharya, H.N., Synthesis of Er3+ and Er3+: Yb3+ doped sol–gel derived silica glass and studies on their optical properties, Bull. Mater. Sci., 2004, vol. 27, no. 4, pp. 367–372.

    Article  CAS  Google Scholar 

  24. Wang, A., Raviprakash, Y., Kamnath, S., D., Dielectric properties and relaxation dynamics in PbF2–TeO2–B2O3–Eu2O3 glasses, Trans. Nonferr. Met. Soc. Chin., 2015, vol. 25, pp. 2637–2645.

    Article  Google Scholar 

  25. Yilmaz, S., Turkoglu, O., Aril, M., Belenli, I., Electrical conductivity of the ionic conductor tetragonal (Bi2O3)1 – x(Eu2O3)x, Ceramica, 2011, vol. 57, pp. 185–192.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are thankful to the CRF, IIT Kharagpur for providing amenities to study DTA and TGA. The authors wish to thanks Midnapore College for support this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mukhopadhyay.

Ethics declarations

FUNDING

The work is partially supported by DST Govt. of West Bengal research project (Memo no. 296 (Sanc)/ST/P/S&T/16G- 17/2017) of India.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirdda, J.N., Mukhopadhyay, S., Sahu, K.R. et al. Enhancement of Optical Emission and Dielectric Properties of Eu3+-Doped Na2O–ZnO–TeO2 Glass Material. Glass Phys Chem 46, 218–227 (2020). https://doi.org/10.1134/S1087659620030104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659620030104

Keywords:

Navigation