Skip to main content
Log in

Structure of Solutions, Glass and Plant Polymers According to the Data of Vibration and Electron Spectroscopy

  • REVIEW
  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The data concerning the studies of solutions, oxide glass, and natural polymers are presented as a result of processing the vibrational and electron spectra by the methods of mathematical statistics. It is shown that based on the proposed concept, the information about stoichiometry and concentrations of the molecular groups of the constant stoichiometry formed in the glass can be obtained, and their properties can be interpreted and calculated based on these data. Moreover, the compositions, which are interesting in practice and meet the optimal values of the characteristics of solutions, glass, and natural polymers, can be predicted. The proposed approach to the description of the structure of amorphous and amorphous-crystalline (cellulose) compounds allows us to predict the crystalline compounds in glass-forming systems without studying the phase diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Kabanov, V.O. and Yanush, O.V., On the existence of structural elements of a certain composition in oxide glasses, Fiz. Khim. Stekla, 1987, vol. 13, no. 4, pp. 524–535.

    CAS  Google Scholar 

  2. Mukhitdinova, I.A., Composition and properties of the products of the interaction of oxides in inorganic glasses, Cand. Sci. (Chem.) Dissertation, Leningrad: Leningrad Technol. Inst. Pulp Paper Ind., 1986.

  3. Yanush, O.V., Kabanov, V.O., and Mukhitdinova, I.A., Study of sodium-borate glasses by Raman spectroscopy, Fiz. Khim. Stekla, 1988, vol. 14, no. 3, pp. 330–341.

    CAS  Google Scholar 

  4. Mukhitdinova, I.A. and Yanush, O.V., The interaction of oxides in glasses of the sodium silicate system according to Raman spectroscopy, Fiz. Khim. Stekla, 1989, vol. 15, no. 1, pp. 34–51.

    Google Scholar 

  5. Valov, P.M., Kabanov, V.O., Mukhitdinova, I.A., and Yanush, O.V., in Tez. dokl.: Stekloobraznoe sostoyanie: molekulyarno-kineticheskii aspekt (Proceedings of the Conference on Glassy State: Molecular Kinetic Aspect), Vladivostok, 1991, part 1, pp. 111–117.

  6. Zubkova, L.V., Kabanov, V.O., Pivovarov, M.M., and Yanush, O.V., Study of the structure of glasses of the B2O3–GeO2 system by Raman spectroscopy, Fiz. Khim. Stekla, 1993, vol. 19, no. 2, pp. 235–249.

    CAS  Google Scholar 

  7. Yanush, O.V., Comparison of silicate, germanate, borate and phosphate glasses structure on the base of constant stoichiometry groupings (CSG) concept, in Proceedings of the 18th International Congress on Glass, July 5–10,1998, San Francisco, CA, pp. 75–80.

  8. Yanush, O.V. and Markova, T.S., New interpretation of oxide glasses properties on the basis of constant stoichiometry groupings (CSG) concept, in Properties and Structure of Oxide Glasses, Klyuev, V.P. and Pevzner, B.Z., Eds., Trivandrum, Kerala, India: Research Signpost, 2010, pp. 1–44.

    Google Scholar 

  9. Gusarova, T.S., Apakova, I.E., Polyakova, I.G., Sycheva, G.A., and Yanush, O.V., The smallest structural elements of glass determining its properties according to vibrational spectroscopy data, Glass Phys. Chem., 2015, vol. 41, no. 1, pp. 42–47.

    Article  CAS  Google Scholar 

  10. Zakaznova-Herzog, V.P., Malfait, W.J., Herzog, F., and Halter, W.E., Quantitative Raman spectroscopy: Principles and application to potassium silicate glasses, J. Non-Cryst. Solids, 2007, vol. 353, nos. 44–46, pp. 4015–4028.

    Article  CAS  Google Scholar 

  11. Biscoe, J. and Warren, B.E., X-Ray diffraction study of soda-boric oxide glass, J. Am. Ceram. Soc., 1938, vol. 21, pp. 287–293.

    Article  CAS  Google Scholar 

  12. Warren, B.E., Summary of work on atomic arrangement in glass, J. Am. Ceram. Soc., 1941, vol. 24, pp. 256–261.

    Article  CAS  Google Scholar 

  13. Ivanov, A.O. and Evstrop’ev, K.S., On the structure of the simplest germanate glasses, Dokl. Akad. Nauk SSSR, 1962, vol. 145, no. 4, pp. 797–800.

    CAS  Google Scholar 

  14. Evstrop’ev, K.S. and Ivanov, A.O., Advances in Glass Technology, New York: Plenum, 1963, vol. 1, pp. 79–85.

    Google Scholar 

  15. Silver, A.H. and Bray, P.J., Nuclear magnetic resonance absorption in glass. I. Nuclear quadrupole effects in boron oxide, soda-boric oxide, and borosilicate glasses, J. Chem. Phys., 1958, vol. 29, pp. 984–991.

    Article  CAS  Google Scholar 

  16. Silver, A.H. and Bray, P.J., Modern Aspects of the Vitreous State, London: Butterworths, 1960, Chap. 5.

    Google Scholar 

  17. Henderson, G.S. and Fleet, M.E., The structure of glasses along the Na2O-GeO2 join, J. Non-Cryst. Solids, 1991, vol. 134, pp. 259–269.

    Article  CAS  Google Scholar 

  18. Wang, H.M. and Henderson, G.S., The germanate anomaly: Is the presence of five- or six-fold Ge important?, Phys. Chem. Glass, 2005, vol. 46, no. 4, pp. 377–380.

    CAS  Google Scholar 

  19. Henderson, G.S., The germanate anomaly: What do we know?, J. Non-Cryst. Solids, 2007, vol. 353, pp. 1695–1704.

    Article  CAS  Google Scholar 

  20. Henderson, G.S., Soltay, L.G., and Wang, H.M., Q speciation in alkali germanate glasses, J. Non-Cryst. Solids, 2010, vol. 356, pp. 2480–2485.

    Article  CAS  Google Scholar 

  21. Silva, M.A.P., Messaddeq, Y., Ribeiro, S.J.L., Poulain, M., Villain, F., and Briois, V., Structural studies on TeO2–PbO glasses, J. Phys. Chem. Solids, 2001, vol. 62, pp. 1055–1060.

    Article  CAS  Google Scholar 

  22. Krogh-Moe, J., An X-ray study of barium borate glasses, Phys. Chem. Glass, 1962, vol. 3, no. 6, pp. 208–212.

    CAS  Google Scholar 

  23. Yiannopoulos, Y.D., Varsamis, C.P.E., and Kamitsos, E.I., Medium range order in glass and the 'germanate anomaly' effect, Chem. Phys. Lett., 2002, vol. 359, pp. 246–252.

    Article  CAS  Google Scholar 

  24. Vedishcheva, N.M., Shakhmatkin, B.A., and Wright, A.C., Thermodynamic modelling of the structure of glasses and melts: Single-component, binary and ternary systems, J. Non-Cryst. Solids, 2001, vols. 293–295, p. 312.

    Article  Google Scholar 

  25. Vedishcheva, N.M. and Wright, A.C., Chemical structure of oxide glasses: A concept for establishing structure-property relationships, in Glass. Selected Properties and Crystallization, Schmelzer, J.W.P., Ed., Berlin: Walter de Gruyter, 2014, pp. 269–300.

    Google Scholar 

  26. Minaev, V.S., Timoshenkov, S.P., and Kalugin, V.V., Nanogeteromorfnaya struktura i relaksatsiya nekristallicheskogo veshchestva (Nanoheteromorphic Structure and Relaxation of Non-Crystalline Substance), Moscow: Mosk. Inst. Elektron. Tekh., 2010.

  27. Sone, K. and Fukuda, Y., Inorganic Thermochromism, Berlin: Springer, 1987.

    Book  Google Scholar 

  28. Arutjunjan, R.E., Markova, T.S., Halopenen, I.Y., Maksimov, I.K., Tutunnikov, A.I., and Yanush, O.V., Smart thermochromic glazing for energy saving window applications, in Proceedings of the Conference on Advanced Optical Materials and Devices, Tartu, Estonia, July 6–9, 2004,Proc. SPIE, 2005, Vol. 5946, pp. 346–352.

    Google Scholar 

  29. Apakova, I.E., Goncharuk, V.K., Maslennikova, I.G., Polyakova, I.G., Anan’ev, A.V., Maksimov, L.V., Markova, T.S., and Yanush, O.V., Medium-range order and physicochemical properties of (100 – x)(0.5PbO · 0.5P2O5) · xTeO2 glasses in terms of the constant stoichiometry grouping concept, Glass Phys. Chem., 2010, vol. 36, no. 6, pp. 637–651.

    Article  CAS  Google Scholar 

  30. Bershtein, I.Ya. and Kaminskii, Yu.L., Spektrofotometricheskii analiz v organicheskoi khimii (Spectrophotometric Analysis in Organic Chemistry), Leningrad: Khimiya, 1975.

  31. Esbensen, K., Multivariate Data Analysis - in Practice, CAMO Software AS, 2006.

    Google Scholar 

  32. Pomerantsev, A., Multivariate Curve Resolution, 2009. http://rcs.chph.ras.ru//Tutorials/mcr.htm.

  33. Apakova, I., Yanush, O., Derkacheva, O., Goncharuk, V., Maslennikova, I., Polyakova, I., Anan’ev, A., Maksimov, L., and Markova, T., Application of the constant stoichiometry grouping concept to the Raman spectra of Pb(PO3)2 · TeO2 glasses, J. Non-Cryst. Solids, 2011, vol. 357, pp. 2675–2683.

    Article  CAS  Google Scholar 

  34. Khvostova, N.O., Karapetyan, G.O., and Yanush, O.V., Complexation of cobalt(II) in acetone and some possibilities of its practical application, Zh. Prikl. Khim., 1983, vol. 56, no. 5, pp. 1053–1057.

    CAS  Google Scholar 

  35. Kabanov, V.O., Karapetyan, G.O., Ermolenko, N.N., Khvostova, N.O., and Yanush, O.V., Composite element for maintaining indoor lighting within specified limits, in Nauchno-tekhnicheskii progress v proizvodstve stekla. Tezisy dokladov II Vsesoyuznogo soveshchaniya (Proceedings of the 2nd All-Union Workshop on Scientific and Technological Progress in the Production of Glass), 1983, p. 167.

  36. Gutmann, V., Coordination Chemistry in Non-Aqueous Solutions, Wien: Springer, 1968.

    Book  Google Scholar 

  37. Markova, T.S. and Yanush, O.V., Correlation of charge transfer and d–d transition spectra of cobalt(II) bromide solutions in trimethyl phosphate, Russ. J. Appl. Chem., 2008, vol. 81, no. 5, pp. 779–785.

    Article  CAS  Google Scholar 

  38. Drago, R.S., Physical Methods for Chemists, Orlando: Saunders College Publ., 1992, vols. 1, 2.

    Google Scholar 

  39. Kryukov, A.I. and Kuchmii, S.Ya., Fotokhimiya kompleksov perekhodnykh metallov (Photochemistry of Transition Metal Complexes), Kiev: Naukova Dumka, 1989.

  40. Bird, B.D. and Day, P., Analysis of the charge-transfer spectra of some first-transition-series tetrahalide complexes, J. Chem. Phys., 1968, vol. 49, no. 1, pp. 392–403.

    Article  CAS  Google Scholar 

  41. Orgel, L.E. and Phil, M.A.D., Charge-transfer spectra and some related phenomena, Quart. Rev., 1954, vol. 3, no. 4, pp. 422–450.

    Article  Google Scholar 

  42. Liver, E., Inorganic Electronic Spectroscopy, Amsterdam: Elsevier, 1984, vol. 1.

    Google Scholar 

  43. Sukhov, D.A., Analysis of the relationship between the structure and properties of cellulose fibers by their vibrational spectra, Extended Abstract of Doctoral (Chem.) Dissertation, St. Petersburg: St. Petersburg State Technol. Univ. Plant Polymers, 2002.

  44. Sukhov, D.A., Zhilkin, A.N., Valov, P.M., and Terentiev, O.A., Cellulose structure in relation to paper properties, Tappi J., 1991, vol. 74, no. 3, pp. 201–204.

    CAS  Google Scholar 

  45. Sukhov, D.A., Hydrogen bonds in natural and mercerized cellulose fibres based on Raman spectroscopic data, Fibre Chem., 2003, vol. 35, no. 4, pp. 277–282.

    Article  CAS  Google Scholar 

  46. Ishankhodzhaeva, M.M., Golen’kov, S.V., and Derkacheva, O.Yu., IR spectra of regenerated larch cellulose from a solution in 1-allyl-3-methylimidazolium chloride, Khim. Rastit. Syr’ya, 2014, no. 3, pp. 105–110.

  47. Nelson, M.L. and O’Connor, R.T., Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II, J. Appl. Polym. Sci., 1964, no. 8, pp. 1325–1341.

  48. Dehant, J., Danz, R., Kimmer, W., and Schmolke, R., Ultrarotspektroskopische Untersuchungen an Polymeren, Berlin: Akademie, 1972.

    Google Scholar 

  49. Azarov, V.I., Burov, A.V., and Obolenskaya, A.V., Khimiya drevesiny i sinteticheskikh polimerov (Chemistry of Wood and Synthetic Polymers), St. Petersburg: Lan’, 2010.

  50. Lignins: Occurrence, Formation, Structure and Reactions, Sarkanen K.V. and Ludwig, C.H., Eds., New York: Wiley, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Gusarova (Markova).

Additional information

Translated by N. Saetova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanush, O.V., Apakova, I.E., Polyakova, I.G. et al. Structure of Solutions, Glass and Plant Polymers According to the Data of Vibration and Electron Spectroscopy. Glass Phys Chem 46, 107–119 (2020). https://doi.org/10.1134/S1087659620020121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659620020121

Keywords:

Navigation