Skip to main content
Log in

61Ni and 63Cu Hyperfine Coupling in Copper Sites of Superconducting Cupric Ceramic Metallic Oxides and Their Dielectric Analogues

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The 61Cu (61Ni) emission Mössbauer spectra of high-temperature superconducting ceramics are measured, as well as a number of dielectric and antiferromagnetic cupric metal oxides, which are structural analogues of high-temperature superconductors. The 61Ni nuclei quadrupole coupling constants are determined and their linear correlations are established with the calculated values of the lattice electric field gradient tensor (EFG) created in the copper sites. Linear correlations are found between the 61Ni and 63Cu nuclei quadrupole coupling constants, which make it possible to determine the valence contribution to the EFG for the both probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Farina, D., de Filippis, G., Mishchenko, A.S., Nagaosa, N., Yang, Jh.-A., Reznik, D., Wolf, Th., and Cataudell, V., Electron-phonon coupling in the undoped cuprate YBa2Cu3O6 estimated from Raman and optical conductivity spectra, Phys. Rev. B, 2018, vol. 98, 121104(R).

    Article  CAS  Google Scholar 

  2. Yamamoto, Sh. and Noriki, Yu., Spin-wave thermodynamics of square-lattice antiferromagnets revisited, Phys. Rev. B, 2019, vol. 99, 094412.

    Article  CAS  Google Scholar 

  3. Miyamoto, T., Matsui, Y., Terashige, T., Morimoto, T., Sono, N., Yada, H., Ishihara, S., Watanabe, Y., Adachi, S., Ito, T., Oka, K., Sawa, A., and Okamoto, H., Probing ultrafast spin-relaxation and precession dynamics in a cuprate Mott insulator with seven-femtosecond optical pulses, Nat. Commun., 2018, vol. 9, p. 3948.

    Article  CAS  Google Scholar 

  4. Perucchi, A., Di Pietro, P., Lupi, S., Sopracase, R., Tebano, A., Giovannetti, G., Petocchi, F., Capone, M., and Di Castro, D., Electrodynamic properties of an artificial heterostructured superconducting cuprate, Phys. Rev. B, 2018, vol. 97, 045114.

    Article  CAS  Google Scholar 

  5. Zhong, Y., Han, S., Wang, Y., Luo, Z., Zhang, D., Wang, L., Li, W., He, K., Song, C.-L., Ma, X.-C., and Xue, Q.-K., Atomic visualization of copper oxide structure in the infinite-layer cuprate SrCuO2, Phys. Rev. B, 2018, vol. 97, 245420.

    Article  CAS  Google Scholar 

  6. Liu, G.Q., Hao, Q.B., Zheng, H.L., Zhang, S.N., Xu, X.Y., Jiao, G.F., Cui, L.J., Wang, P.F., and Li, C.S., Effect of grinding method on the precursor powder of Bi2223 and properties of strip, J. Phys.: Conf. Ser., 2018, vol. 1054, 01204230.

    Google Scholar 

  7. Petersen, J.C., Farahani, A., Sahota, D.G., Liang, R., and Dodge, J.S., Transient terahertz photoconductivity of insulating cuprates, Phys. Rev. B, 2017, vol. 96, 115133.

    Article  Google Scholar 

  8. Seregin, N., Marchenko, A., and Seregin, P., Emission Mössbauer Spectroscopy. Electron Defects and Bose-Condensation in Crystal Lattices of High-Temperature Supercomductors, Saarbrücken, Germany: Lambert Academic, 2015.

    Google Scholar 

  9. Bordovsky, G.A., Marchenko, A.V., Nikolaeva, A.V., Seregin, P.P., and Bobokhuzhaev, K.U., Determination of atom charge states in lattices of superconducting metal oxides of copper by 61Cu(61Ni) and 67Cu(67Zn) emission Mössbauer spectroscopy, Glass Phys. Chem., 2015, vol. 41, pp. 237–243.

  10. Takatsuka, T., Kumagai, K., Nakajima, H. and Yamanaka, A., Hyperfine fields and quadrupole frequencies at each Cu site in RBa2Cu3O6 and RBa2Cu3O7 (R: rare earth element), Phys. C(Amsterdam,Neth.), 1991, vols. 185–189, pp. 1071–1072.

    Google Scholar 

  11. Yoshinari, Y., Yasuoka, H., Shimizu, T., and Takagi, H., Tokura, Y., and Uchida, S., Antiferromagnetic nuclear resonance of Cu in Nd2CuO4, J. Phys. Soc. Jpn., 1990, vol. 59, pp. 36–39.

    Article  CAS  Google Scholar 

  12. Shimizu, T., On the electric field gradient at copper nuclei in oxides, J. Phys. Soc. Jpn., 1993, vol. 62, pp. 772–778.

    Article  CAS  Google Scholar 

  13. Siegrist, T., Zahurak, S.M., Murphy, D.W., and Roth, R.S., The parent structure of the layered high-temperature superconductors, Nature (London, U.K.), 1988, vol. 334, pp. 231–232.

    Article  CAS  Google Scholar 

  14. Yvon, K. and Francois, M., Crystal structure of high-Tc oxides, Z. Phys. B: Condens. Matter, 1989, vol. 76, pp. 413–444.

  15. Zhou, X., Wu, F., Yin, B., Liu, W., Dong, C., Li, J., Zhu, W., Jia, S., Yao, Y., and Zhao, Z., Structure and superconductivity in the infinite-layer Sr1 – xCuO2 system prepared under high pressure, Phys. C(Amsterdam,Neth.), 1994, vol. 233, pp. 311–320.

    Google Scholar 

  16. Haas, H. and Correia, J.G., EFG calculations for Cu2+ compounds, Hyperfine Interact., 2007, vol. 176, pp. 9–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Seregin.

Additional information

Translated by A. Kolemesin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordovsky, G.A., Marchenko, A.V., Nasredinov, F.S. et al. 61Ni and 63Cu Hyperfine Coupling in Copper Sites of Superconducting Cupric Ceramic Metallic Oxides and Their Dielectric Analogues. Glass Phys Chem 46, 170–175 (2020). https://doi.org/10.1134/S1087659620020029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659620020029

Keywords:

Navigation