Skip to main content
Log in

RETRACTED ARTICLE: Mechanical and Bioactivity Assessment of Wollastonite/PVA Composite Synthesized from Bentonite Clay

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

This article was retracted on 01 November 2019

This article was retracted on 01 November 2019

This article has been updated

Abstract

Glass/polymer composites can mimic the natural structure of bone by possessing a fibre-matrix configuration which provides appropriate physical and biological properties. Wollastonite ceramics are known for their promising bioactivity and biocompatibility when applied in bone regeneration. Polyvinyl alcohol (PVA) has various attractive properties including biocompatibility and degradability which may be exploited as a polymer matrix in composites for biomedical applications. Therefore, a cost–effective method of preparing wollastonite/PVA composites is desirable by starting from bentonite clay as silica source for the glass, instead of traditional alkoxysilanes. Results obtained revealed for the composite a compressive strength of 0.3 MPa, the ability to induce apatite on its surface when immersed in simulated body fluid (SBF) for 7 days, and exhibited desirable controlled degradation. Оur method can be up-scaled for preparation of wollastonite/PVA composite commercially for possible use in bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Change history

  • 05 August 2020

    erratum

  • 05 August 2020

    erratum

REFERENCES

  1. Lukito, D., Xue, J.M., and Wang, J., In vitro bioactive assessment of 70 (wt)% SiO2 30 (wt)% CaO bioactive glasses in simulated body, fluid, Mater. Lett., 2005, vol. 59, no. 26, pp. 3267–3271. https://doi.org/10.1016/j.matlet.2005.05.055

    Article  CAS  Google Scholar 

  2. Xynos, I.D., Edgar, A.J., Buttery, L.D.K., Hench, L.L., and Polak, J.M., Gene-expression profiling of human osteoblasts following treatment with the ionic products of bioglass 45S5 dissolution, J. Biomed. Mater. Res., 2001, vol. 55, no. 2, pp. 151–157. doi 10.1002/1097 4636(200105)55:2<151::AID-JBM1001>3.0.CO;2-D

  3. Saravanapavan, P. and Hench, L.L., Low-temperature synthesis, structure, and bioactivity of gel-derived glasses in the binary CaO-SiO2 system, J. Biomed. Mater. Res., 2001, vol. 54, no. 4, pp. 608–618. doi 10.1002/1097-4636(20010315)54:4<608::AID JBM180>3.0.CO;2-U

  4. De Aza, P.N., Guitian, F., and De Aza, S., Bioactivity of wollastonite ceramics: in vitro evaluation, Scr. Metall. Mater., 1994, vol. 31, no. 8, pp. 1001–1005. https://doi.org/10.1016/0956-716X(94)90517-7

    Article  CAS  Google Scholar 

  5. De Aza, P.N., Luklinska, Z., Anseau, M.R., Guitian, F., and De Aza, S., Morphological studies of pseudowollastonite for biomedical application, J. Microsc., 1996, vol. 182, no. 1, pp. 24–31. https://doi.org/10.1111/j.1365-2818.1996.tb04794.x

    Article  CAS  Google Scholar 

  6. Nakamura, T., Yamamuro, T., Higashi, S., Kokubo, T., and Itoo, S., A new glass-ceramic for bone replacement: vvaluation of its bonding to bone tissue, J. Biomed. Mater. Res., 1985, vol. 19, no. 6, pp. 685–698. https://doi.org/10.1002/jbm.820190608

    Article  CAS  Google Scholar 

  7. Jones, J.R., Review of bioactive glass: from Hench to hybrids, Acta Biomater., 2013, vol. 9, no. 1, pp. 4457–4486. https://doi.org/10.1016/j.actbio.2012.08.023

    Article  CAS  Google Scholar 

  8. Navarro, M., Aparicio, C., Charles-Harris, M., Ginebra, M.P., Engel, E., and Planell, J.A., Development of a biodegradable composite scaffold for bone tissue engineering: physicochemical, topographical, mechanical, degradation, and biological properties, in Ordered Polymeric Nanostructures at Surfaces, Vancso, G.J., Ed., Berlin: Springer, 2006, pp. 209–312.

    Google Scholar 

  9. Huang, Z.H., and Qiu, K.Y., The effects of interactions on the properties of acrylic polymers/silica hybrid materials prepared by the in situ sol-gel process, Polymer, 1997, vol. 38, no. 3, pp. 521–526. https://doi.org/10.1016/S0032-3861(96)00561-7

    Article  CAS  Google Scholar 

  10. Misra, S.K., Ansari, T., Mohn, D., Valappil, S.P., Brunner, T.J., Stark, W.J., Roy, I., Knowles, J.C., Sibbons, P.D., Jones, E.V., Boccaccini, A.R., and Salih, V., Effect of nanoparticulate bioactive Ggass particles on bioactivity and cytocompatibility of poly(3 hydroxybutyrate) composites, J. R. Soc. Interface, 2010, vol. 7, no. 44, pp. 453–465. https://doi.org/10.1098/rsif.2009.0255

    Article  CAS  Google Scholar 

  11. Fantner, G.E., Rabinovych, O., Schitter, G., Thurner, P., Kindt, J.H., Finch, M.M., Weaver, J.C., Golde, L.S., Morse, D.E., Lipman, E.A., Rangelow, I.W., and Hansma, P.K., Hierarchical interconnection in the nanocomposite material bone: fibrillar cross-links resist fracture on several length scales, Compos. Sci. Technol., 2006, vol. 66, no. 9, pp. 1205–1211. https://pdfs.semanticscholar.org/5ca3/46d788fdce-515bd89c567787bb837d127d6a.pdf.

    Article  CAS  Google Scholar 

  12. Hunter, G.K., and Goldberg, H. A., Modulation of crystal formation by bone phosphoproteins: role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein, Biochem. J., 1994, vol. 302, no. 1, pp. 175–179. PMCID: PMC1137206.

    Article  CAS  Google Scholar 

  13. Marelli, B., Ghezzi, C.E., Mohn, D., Stark, W.J., Barralet, J.E., Boccaccini, A.R., and Nazhat, S.N., Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function, Biomaterials, 2011, vol. 32, no. 34, pp. 8915–8926. https://doi.org/10.1016/j.biomaterials.2011.08.016

    Article  CAS  Google Scholar 

  14. Guirguis, O.W. and Moseley, M.T.H., Thermal and structural studies of poly(vinyl alcohol) and hydroxypropyl cellulose blends, Nat. Sci., 2012, vol. 4, no. 1, pp. 57–67. https://doi.org/10.4236/ns.2012.41009

    Article  CAS  Google Scholar 

  15. Adams, L.A. and Essien, E.R., Bioactivity of quaternary glass prepared from bentonite clay, J. Adv. Ceram., 2016, vol. 5, no. 1, pp. 47–53. https://doi.org/10.1007/s40145-015-0172-y

    Article  CAS  Google Scholar 

  16. Goy, D.P., Gorosito, E., Costa, H.S., Mortarino, P., Pedemonte, N.A., Toledo, J., Mansur, H.S., Pereira, M.M., Battaglino, R., and Feldman, S., Hybrid matrix grafts to favor tissue regeneration in rabbit femur bone lesions, Open Biomed. Eng. J., 2012, vol. 6, no. 1, pp. 85–91. https://doi.org/10.2174/1874120701206010085

    Article  CAS  Google Scholar 

  17. Jie, Q., Lin, K., Zhong, J., Shi, Y., Li, Q., Chang, J., and Wang, R., Preparation of macroporous sol-gel bioglass using PVA particles as pore former, J. Sol-Gel Sci. Technol., 2004, vol. 30, no. 1, pp. 49–61. https://doi.org/10.1023/B:JSST.0000028196.09929.a3

    Article  CAS  Google Scholar 

  18. Mansur, H.S., and Costa, H.S., Nanostructured poly(vinyl alcohol)/bioactive glass and poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biiomedical applications, Chem. Eng. J., 2008, vol. 137, no. 1, pp. 72–83. https://doi.org/10.1016/j.ce.2007.09.036

    Article  CAS  Google Scholar 

  19. de Oliveira, A.A.R., Gomide, V.S., Leite, M.F., Mansur, H.S., and Pereira, M.M., Effect of polyvinyl alcohol content and after synthesis neutralization on structure, mechanical properties and cytotoxicity of sol-gel derived hybrid foams, Mater. Res., 2009, vol. 12, no. 2, pp. 239–244. https://doi.org/10.1590/S1516-14392009000200021

    Article  Google Scholar 

  20. Luisa, L.S., Dias, I., Mansur, H.S., Donnici, C.L., and Pereira, M.M., Synthesis and characterization of chitosan-polyvinyl alcohol-bioactive glass hybrid membranes, Biomatter, 2011, vol. 1 no. 1, pp. 114–119. https://doi.org/10.4161/biom.1.1.17449

    Article  Google Scholar 

  21. Pereira, M.M., Jones, J.R., Orefice, R.L., and Hench, L.L., Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method, J. Mater. Sci.: Mater. Med., 2005, vol. 16, no. 11, pp. 1045–1020. https://doi.org/10.1007/s10856-005-4758-8

    Article  CAS  Google Scholar 

  22. Pereira, A.P.V., Vasconcelos, W.L., and Oréfice, R.L., Novel multicomponent silicate-poly(vinyl alcohol) hybrids with controlled reactivity, J. Non-Cryst. Solids, 2000, vol. 273, nos. 1–3, pp. 180–185. https://doi.org/10.1016/S0022-3093(00)00166-6

    Article  CAS  Google Scholar 

  23. Kokubo, T. and Takadama, H., How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 2006, vol. 27, no. 15, pp. 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  Google Scholar 

  24. Hench, L.L. and Polak, M., Third-generation biomedical materials, Science (Washington, DC, U. S.), 2002, vol. 295, no. 5557, pp. 1014–1017. https://doi.org/10.1126/science.1067404

    Article  CAS  Google Scholar 

  25. Downs, B., Swaminathan, R., and Bartelmehs, K., Interactive software for calculating and displaying X‑ray or neutron powder diffractometer patterns of crystalline materials, Am. Mineral., 1993, vol. 78, nos. 9–10, pp. 1104–1107.

    CAS  Google Scholar 

  26. Lee, Y.M., Kim, S.H., and Kim, S.J., Preparation and characteristics of β-chitin and poly(vinyl alcohol) blend, Polymer, 1996, vol. 37, no. 26, pp. 5897–5905. https://doi.org/10.1016/S0032-3861(96)00449-1

    Article  Google Scholar 

  27. Venkatasubbu, G.D., Ramasamy, S., Ramakrishnan, V., and Kumar, J., Nanocrystalline hydroxyapatite and zinc-doped hydroxyapatite as carrier material for controlled delivery of ciprofloxacin, Biotechnology, 2011, vol. 1, no. 3, pp. 173–186. https://doi.org/10.1007/s13205-011-0021-9

    Article  Google Scholar 

  28. Cerruti, M. and Morterra, C., Carbonate formation on bioactive glasses, Langmuir, 2004, vol. 20, no. 15, pp. 6382–6388. https://doi.org/10.1021/la049723c

    Article  CAS  Google Scholar 

  29. Jabbar, W.A., Habubi, N.F., and Chiad, S.S., Optical characterization of silver doped poly(vinyl alcohol) films, J. Ark. Acad. Sci., 2010, vol. 64, no. 21, pp. 101–105. http://scholarworks.uark.edu/jaas/vol64/iss1/21.

    CAS  Google Scholar 

  30. Hench, L.L., Bioceramics, J. Am. Ceram. Soc., 1998, vol. 81, no. 7, pp. 1705–1728. https://doi.org/10.1111/j.1151-2916.1998.tb02540.x

    Article  CAS  Google Scholar 

  31. Ohtsuki, C., Kokubo, T., and Yamamuro, T., Mechanism of apatite formation on CaO–SiO2–P2O5 glasses in a simulated body fluid, J. Non-Cryst. Solids, 1992, vol. 143, no. 1, pp. 84–92. https://doi.org/10.1016/S0022-3093(05)80556-3

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the Department of Biomedical Engineering of University of Ghana, Legon, for providing the facilities for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. A. Adams or E. R. Essien.

Additional information

The authors, the editor, and the publisher have retracted this article as it has been published by the same authors due to miscommunication between the journal and the authors after submission. The editors and the publisher apologize for any inconvenience caused. All authors have agreed to this retraction.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, L.A., Essien, E.R. & Kaufmann, E.E. RETRACTED ARTICLE: Mechanical and Bioactivity Assessment of Wollastonite/PVA Composite Synthesized from Bentonite Clay. Glass Phys Chem 45, 119–125 (2019). https://doi.org/10.1134/S1087659619020020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659619020020

Keywords:

Navigation