Skip to main content
Log in

Nucleation of Crystals in Glass Based on Blast-Furnace Slag: Influence of Chemical Differentiation on the Process of Nucleation

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Glass compositions based on blast-furnace slag are synthesized. Segregation (chemical differentiation) is observed in one of the glass samples based on blast-furnace slag and its influence on the nucleation of crystals in this glass composition is studied. It is found that the dependences of the crystal growth rate of melilite on the thermal processing time are oscillatory in nature with a monotonic decrease in the absolute oscillation amplitude. The crystallization behavior of glass samples without chemical differentiation is compared with that of glass, in which the process of chemical differentiation precedes the bulk nucleation of crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Vogel, W. and Gerth, K., Catalyzed crystallization in glass, in Proceedings of the Symposium on Nucleation and Crystallization in Glasses and Melts, Columbus, April, 1961, pp. 11–22.

  2. Maurer, R.D., Crystal nucleation in a glass containing titanium, Appl. Phys., 1962, vol. 33, no. 6, pp. 2132–2139. https://doi.org/10.1063/1.1728909

    Article  Google Scholar 

  3. Olberg, S.M., Golob, H.R., and Strickler, D.W., Crystal nucleation by glass in glass separation, in Proceedings of the Symposium on Nucleation and Crystallisation in Glasses and Melts, Reser, M.K., Ed., Columbus, Ohio: Am. Ceram. Soc., 1962, pp. 55–62.

  4. Doherty, P.E. and Lee, D.W., Direct observation of the crystallization of Li2O–A12O3–SiO2 glasses containing TiO2, Am. Ceram. Soc., 1967, vol. 50, pp. 77–81.

    Article  Google Scholar 

  5. Roy, R., Metastable liquid immiscibility and subsolidus nucleation, Am. Ceram. Soc., 1960, vol. 43, pp. 670–671.

    Article  Google Scholar 

  6. Sevard, T.P., Uhlmann, D.R., and Turnball, D., Phase separation in the system BaO-SiO2, Am. Ceram. Soc., 1968, vol. 51, pp. 278–285.

    Article  Google Scholar 

  7. MacDovel, J.P. and Beal, G.H., Immiscibility and crystallization in Al2O3–SiO2 glasses, Am. Ceram. Soc., 1969, vol. 52, pp. 17–25.

    Article  Google Scholar 

  8. Mashkovich, M.D. and Varshal, B.G., Dielectric properties of sitalls in the system SiO2-BaO, Izv. Akad. Nauk SSSR, Ser. Neorg. Mater., 1969, vol. 5, no. 2, pp. 335–339.

    Google Scholar 

  9. Harper, H., James, P.F., Macmillan, P.W., Crystal nucleation in lithium silicate glasses, Discuss. Faraday Soc., 1970, vol. 50, pp. 206–213.

    Article  Google Scholar 

  10. Burnett, D.G. and Douglass, R.W., Immiscibility, nucleation and crystal growth of the soda-baria-silica system, Discuss. Faraday Soc., 1970, vol. 50, pp. 200–205.

    Article  Google Scholar 

  11. Hillig, W.B., A theoretical and experimental investigation of nucleation leading to uniform crystallisation of glass, in Proceedings of the Symposium on Nucleation and Crystallisation in Glasses and Melts, Reser, M.K., Ed., Columbus, Ohio: Am. Ceram. Soc., 1962, pp. 77–89.

  12. Bayer, G., Florke, O.W., Hoffman, W., and Scheel, H.-J., Demixing and crystallization in glasses of the system Na2O–TiO2–SiO2, Glastech. Ber., 1966, vol. 39, no. 5, pp. 242–261.

    Google Scholar 

  13. Tomozava, M., Liquid phase separation and crystal growth in Li2O–SiO2 glass, Phys. Chem. Glasses, 1973, vol. 14, pp. 112–113.

    Google Scholar 

  14. Rincón, J.Ma., González-Oliver, C.J.R., and James, P.F., Phase separation in Li2O–SiO2 glasses with additions of V2O5, MnO2 and Cr2O3, J. Mater. Sci., 1988, vol. 23, no. 7, pp. 2512–2516.

    Article  Google Scholar 

  15. Filipovich, V.N., About the relationship between the structures of the melt, glass and sitall, in Strukturnye prevrashcheniya v steklakh pri povyshennykh temperaturakh (Structural Transformations in Glasses at Elevated Temperatures), Moscow: Akad. Nauk SSSR, 1965, pp. 15–29.

  16. Cahn, W. and Charles, R.J., The initial stages of phase separation in glasses, Phys. Chem. Glasses, 1965, vol. 6, no. 3, pp. 181–191.

    Google Scholar 

  17. Cahn, J.W., The metastable liquidus and its effect on the crystallization of glass, J. Am. Ceram. Soc., 1969, vol. 52, no. 3, pp. 118–121.

    Article  Google Scholar 

  18. Goldstein, M., General discussion, Discuss. Faraday Soc., 1970, vol. 50, p. 222.

    Article  Google Scholar 

  19. Haller, W. and Macedo, P.B., The origin of phase connectivity in microheterogeneous glasses, Phys. Chem. Glasses, 1968, vol. 9, no. 5, pp. 153–155.

    Google Scholar 

  20. Polyakova, I.G., Structure of glass near eutectics of phase diagrams on the example of the barium-borate system according to the DTA data, Glass Phys. Chem., 2015, vol. 41, no. 1, pp. 48–53.

    Article  Google Scholar 

  21. Dymshits, O.S., Zhilin, A.A., Petrov, V.I., Tsenter, M.Y., Chuvaeva, T.I., and Golubkov, V.V., A Raman spectroscopic study of phase transformations in titanium-containing lithium aluminosilicate glasses, Glass. Phys. Chem., 1998, vol. 24, pp. 79–96.

    Google Scholar 

  22. Golubkov, V.V., Dymshits, O.S., Zhilin, A.A., Chuvaeva, T.I., and Shashkin, A.V., On the phase separation and crystallization of glasses in the MgO–Al2O3–SiO2–TiO2 system, Glass. Phys. Chem., 2003, vol. 29, pp. 254–266.

    Article  Google Scholar 

  23. Golubkov, V.V., Dymshits, O.S., Petrov, V.I., Shashkin, A.V., Tsenter, M.Y., Zhilin, A.A., and Kang, U., Small-angle X-ray scattering and low-frequency raman scattering of liquid phase separation and crystallization in titania-containing glasses of the ZnO–Al2O3–SiO2 system, J. Non-Cryst. Solids, 2005, vol. 351, pp. 711–721.

    Article  Google Scholar 

  24. Guignard, M., Cormier, L., Montouillout, V., Menguy, N., and Massiot, D., Structural fluctuations and role of Ti as nucleating agent in an aluminosilicate glass, J. Non-Cryst. Solids, 2010, vol. 356, pp. 1368–1373.

    Article  Google Scholar 

  25. Guignard, M., Cormier, L., Montouillout, V., Menguy, N., Massiot, D., Hannon, A.C., and Beuneu, B., Rearrangement of the structure during nucleation of a cordierite glass doped with TiO2, J. Phys.: Condens. Matter, 2010, vol. 22, p. 185 401.

    Google Scholar 

  26. Cormier, L., Dargaud, O., Menguy, N., Henderson, G.S., Guignard, M., Trcera, N., and Watts, B., Investigation of the role of nucleating agents in MgO–SiO2–Al2O3–SiO2–TiO2 glasses and glass-ceramics: A XANES study at the Ti K- and L2,3-edges, Cryst. Growth Des., 2011, vol. 11, pp. 311–319.

    Article  Google Scholar 

  27. Cormier, L., Cochain, B., Dugue, A., and Dargaud, O., Transition elements and nucleation in glasses using X‑ray absorption spectroscopy, Int. J. Appl. Glass. Sci., 2014, vol. 5, pp. 126–135.

    Article  Google Scholar 

  28. Cormier, L., Dargaud, O., Calas, G., Jousseaume, C., Papin, S., Trcera, N., and Cognigni, A., Zr environment and nucleation role in aluminosilicate glasses, Mater. Chem. Phys., 2015, vol. 152, pp. 41–47.

    Article  Google Scholar 

  29. Dargaud, O., Cormier, L., Menguy, N., and Patriarche, G., Multi-scale structuration of glasses: Observations of phase separation and nanoscale heterogeneities in glasses by Z-contrast scanning electron transmission microscopy, J. Non-Cryst. Solids, 2012, vol. 358, pp. 1257–1262.

    Article  Google Scholar 

  30. Dargaud, O., Cormier, L., Menguy, N., Patriarche, G., and Calas, G., Mesoscopic scale description of nucleation processes in glasses, Appl. Phys. Lett., 2011, vol. 99, p. 021 904.

    Article  Google Scholar 

  31. Fernandez-Martin, C., Bruno, G., Crochet, A., Ovono, D., Comte, M., and Hennet, L., Nucleation and growth of nanocrystals in glass-ceramics: An in situ SANS perspective, J. Am. Ceram. Soc., 2012, vol. 95, no. 4, pp. 1304–1312. https://doi.org/10.1111/j.1551-2916.2012.05093.x

    Article  Google Scholar 

  32. Patzig, C., Dittmer, M., Gawronski, A., Höche, T., and Rüssel, C., Crystallization of ZrO2-nucleated MgO/Al2O3/SiO2 glasses—a TEM study, Cryst. Eng. Commun., 2014, vol. 16, pp. 6578–6587.

    Article  Google Scholar 

  33. Raghuwanshi, V.S., Rüssel, C., and Hoell, A., Crystallization of ZrTiO4 nanocrystals in lithium-alumino-silicate glass ceramics: Anomalous small-angle X-ray scattering investigation, Cryst. Growth. Des., 2014, vol. 14, pp. 2838–2845.

    Article  Google Scholar 

  34. Patzig, C., Höche, T., Dittmer, M., and Rüssel, C., Zr coordination change during crystallization of MgO–Al2O3–SiO2–ZrO2 glass ceramics, J. Non-Cryst. Solids, 2014, vol. 384, pp. 47–54.

    Article  Google Scholar 

  35. Berndt, S., Gawronski, A., Patzig, C., Wisniewski, W., Höche, T., and Rüssel, C., Oriented crystallization of a β-quartz solid solution from a MgO/Al2O3/SiO2 glass in contact with tetragonal ZrO2 ceramics, RSC Adv., 2015, vol. 5, pp. 15 164–15 171.

    Article  Google Scholar 

  36. Kleebusch, E., Patzig, C., Höche, T., and Rüssel, C., Phase formation during crystallization of a Li2O–Al2O3–SiO2 glass with ZrO2 as nucleating agent—An X-ray diffraction and (S)TEM-study, Ceram. Int., 2017, vol. 43, pp. 9769–9777.

    Article  Google Scholar 

  37. Gendler, T.S., Mitrofanov, K.P., Plotnikova, M.V., Tykachinskii, I.D., and Fedorovskii, Ya.A., The study of the initial stages of crystallization of glasses using the Mössbauer effect, Izv. Akad. Nauk SSSR, Ser. Neorg. Mater., 1966, vol. 2, no. 7, pp. 1277–1279.

    Google Scholar 

  38. Pavlushkin, N.M. and Ellern, G.A., Peculiarities of the initial stages of sitalization of glasses nucleated with zirconium dioxide, Tr. Mosk. Khim.-Tekhnol. Inst., 1967, no. 55, pp. 74–80.

  39. Aleinikov, F.K., The influence of catalysts on the initial stages of crystallization of some glasses, Izv. Akad. Nauk SSSR, Ser. Neorg. Mater., 1970, vol. 6, no. 3, pp. 528–531.

    Google Scholar 

  40. Kondrat’ev, Yu.N., Investigation of the properties of lithium aluminum silicate glasses and their crystallization products, Extended Abstract of Cand. Sci. Dissertation, Leningrad: State Opt. Inst., 1965.

  41. Tykachinskii, I.D. and Fedorovskii, Ya.A., Investigation of the initial stages of catalyzed crystallization of some lithium-aluminosilicate glasses, Izv. Akad. Nauk SSSR, Ser. Neorg. Mater., 1968, vol. 4, no. 5, pp. 751–754.

    Google Scholar 

  42. Bobovich, Ya.S. and Arkhipenko, D.K., On the structure of titanium dioxide catalyzed sitals, Opt. Spektrosk., 1964, vol. 17, no. 5, pp. 755–758.

    Google Scholar 

  43. Hopper, R.W. and Ulmann, D.R., Coalescence of second phase particles in phase separation, Discuss. Faraday Soc., 1970, vol. 50, pp. 166–174.

    Article  Google Scholar 

  44. Barry, T.J., Lay, L.A., and Miller, R.P., Nucleation efficiency in lithia-alumina-silica glasses, Discuss. Faraday Soc., 1970, vol. 50, pp. 214–221.

    Article  Google Scholar 

  45. Khodakovskaya, R.Ya., Khimiya titanosoderzhashchikh stekol i sitallov (Chemistry of Titanium-Containing Glasses and Sitals), Moscow: Khimiya, 1978.

  46. Varshall, B.G., Glass elimination and crystallization in the systems SiO2–Al2O3–R2O (RO) –TiO2, Fiz. Khim. Stekla, 1975, vol. 1, no. 2, pp. 127–133.

    Google Scholar 

  47. Varshall, B.G., Elimination phenomena and the structure of glasses in three-component aluminosilicate glasses, Fiz. Khim. Stekla, 1975, vol. 1, no. 1, pp. 47–52.

    Google Scholar 

  48. Tykachinskii, I.D., Studies of catalyzed crystallization of glass, in Katalizirovannaya kristallizatsiya stekol, Sbornik dokladov simpoziuma (Proceedings of the Symposium on Catalyzed Crystallization of Glass, Nov. 21–23, 1978), Tykachinskii, I.D., Fedorovskii, Ya.A., and Varshal, B.G., Eds., Moscow: GIS, 1978, pp. 3–12.

  49. Sostoyanie i perspektivy sovershenstvovaniya tekhnologii proizvodstva kamnelitykh izdelii. Tezisy dokladov nauchno-prakticheskoi konferentsii (Proceedings of the Conference on The State and Prospects of Improving the Technology of Production of Stone Products, Nov. 29–Dec. 1, 1988, Bakuriani, Ureki); Kamennoe, shlakokamennoe lit’e. Otraslevoi katalog (Stone, Slag-Stone Casting. Industry Directory), Moscow: Minchermet SSSR, NII Chermetinformatsiya, 1988.

  50. Ovecoglu, M.L., Microstructural characterization and physical properties of a slag-based glass-ceramic crystallized at 950 and 1100°C, J. Eur. Ceram. Soc., 1998, vol. 18, pp. 161–168.

    Article  Google Scholar 

  51. Fredericci, C., Zanotto, E.D., and Ziemath, E.C., Crystallization mechanism and properties of a blast furnace slag glass, J. Non-Cryst. Solids, 2000, vol. 273, pp. 64–75.

    Article  Google Scholar 

  52. Kamusheva, A., Hamzawy, E.M.A., and Karamanov, A., Crystallization and structure of glass-ceramic from electric arc furnace slag, J. Chem. Technol. Metall., 2015, vol. 50, no. 4, pp. 512–519.

    Google Scholar 

  53. Zhao, G., Li, Y., Dai, W., and Cang, D., Crystallization mechanism and properties of high basicity steel slag-derived glass-ceramics, J. Ceram. Soc. Jpn., 2016, vol. 124, no. 3, pp. 247–250.

    Article  Google Scholar 

  54. Sycheva, G.A. and Polyakova, I.G., Volume nucleation of crystals in glass based on blast-furnace slag, Glass Phys. Chem., 2013, vol. 39, no. 3, pp. 248–260.

    Article  Google Scholar 

  55. Sycheva, G.A., Polyakova, I.G., and Kostyreva, T.G., Volumetric nucleation of crystals catalyzed by Cr2O3 in glass based on furnace slags, Glass Phys. Chem., 2016, vol. 42, no. 3, pp. 238–245.

    Article  Google Scholar 

  56. Sycheva, G.A. and Polyakova, I.G., Surface crystallization of glass based on blast furnace slags, Glass Phys. Chem., 2016, vol. 42, no. 4, pp. 372–378.

    Article  Google Scholar 

  57. Sycheva, G.A., Volume and surface nucleation of crystals in glass based on blast-furnace slag, J. Cryst. Process Technol., 2017, no. 7, pp. 11–47.

  58. Chernyavskii, I.Ya., On the mechanism of crystallization of blast furnace slags, Metally, 1974, no. 5, pp. 39–40.

  59. Ardell, A.S., The effect of volume fraction on particle coarsening: The theoretical consideration, Acta Metall., 1972, vol. 20, no. 1, pp. 61–71.

    Article  Google Scholar 

  60. Sycheva, G.A., Phase separation and crystallization in glasses of the lithium silicate system xLi2O–(100 – x)SiO2 (x = 23.4, 26.0, 33.5), Glass Phys. Chem., 2011, vol. 37, no. 2, pp. 135–149.

    Article  Google Scholar 

  61. Sycheva, G.A., Crystal growth and nucleation in glasses in the lithium silicate system, J. Cryst. Process Technol., 2016, no. 6, pp. 29–55.

  62. Korzhinskii, D.S., Issledovanie prirodnogo i tekhnicheskogo mineraloobrazovaniya (Study of Natural and Technical Mineralization), Moscow: Nauka, 1973.

  63. Appen, A.A., Khimiya stekla (Chemistry of Glass), Leningrad: Khimiya, 1974.

  64. Mel’nichenko, L.G. and Pavlova, V.N., The study of the delamination of slag glass and its influence on the process of sitalization, in Shlakositally (Slag Sitals), Bondarev, K.T., Pavlushkin, N.M., Kozlovskii, V.S., Minakov, A.G., Minakov, V.A., and Strekalov, A.V., Eds., Moscow, Izdat. Liter. Stroitel’stvu, 1970, pp. 21–26.

    Google Scholar 

  65. Lapin, V.V., Liquidation of silicate melt in metallurgical slag, Tr. Petrogr. Inst., 1938, no. 13, p. 247.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Sycheva.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sycheva, G.A. Nucleation of Crystals in Glass Based on Blast-Furnace Slag: Influence of Chemical Differentiation on the Process of Nucleation. Glass Phys Chem 45, 19–28 (2019). https://doi.org/10.1134/S1087659619010127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659619010127

Keywords:

Navigation