Glass Physics and Chemistry

, Volume 44, Issue 5, pp 464–473 | Cite as

Evolution of Acid–Base Properties of the Surface of Zinc Oxide Powders Obtained by the Method of Grinding in an Attritor

  • I. A. ProninEmail author
  • N. D. Yakushova
  • M. M. Sychev
  • A. S. Komolov
  • S. V. Myakin
  • A. A. Karmanov
  • I. A. Averin
  • V. A. Moshnikov


The evolution of the acid–base properties of the surface of zinc oxide powders during mechanical grinding in an attritor is studied. The study is performed using the methods of the adsorption of acid–base indicators and X-ray photoelectron spectroscopy. Correlations between the results obtained by these methods are established. It is shown that a monotonic decrease in the particle size of ZnO powders is accompanied by a nonmonotonic change in the surface acid–base properties.


zinc oxide mechanical grinding attritor surface acid–base properties distribution of adsorption sites X-ray photoelectron spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Znaidi, L., Sol-gel-deposited ZnO thin films: A review, Mater. Sci. Eng., B., 2010, vol. 174, pp. 18–30.CrossRefGoogle Scholar
  2. 2.
    Dimitrov, D.Tz., Nikolaev, N.K., Papazova, K.I., Krasteva, L.K., Pronin, I.A., Averin, I.A., Bojinova, A.S., Georgieva, A.Ts., Yakushova, N.D., Peshkova, T.V., Karmanov, A.A., Kaneva, N.V., and Moshnikov, V.A., Investigation of the electrical and ethanol-vapour sensing properties of the junctions based on ZnO nanostructured thin film doped with copper, Appl. Surf. Sci., 2017, vol. 392, pp. 95–108.CrossRefGoogle Scholar
  3. 3.
    Pronin, I.A., Donkova, B.V., Dimitrov, D.Ts., Averin, I.A., Pencheva, Zh.A., and Moshnikov, V.A., Relationship between the photocatalytic and photoluminescence properties of zinc oxide doped with copper and manganese, Semiconductors, 2014, vol. 48, no. 7, pp. 842–847.CrossRefGoogle Scholar
  4. 4.
    Meng, P., Lyu, S., Hu, J., and He, J., Tailoring low leakage current and high nonlinear coefficient of a Y-doped ZnO varistor by indium doping, Mater. Lett., 2017, vol. 188, pp. 77–79.CrossRefGoogle Scholar
  5. 5.
    Bazazi, S., Arsalani, N., Khataee, A., and Tabrizi, A.G., Comparison of ball milling-hydrothermal and hydrothermal methods for synthesis of ZnO nanostructures and evaluation of their photocatalytic performance, J. Ind. Eng. Chem., 2018, vol. 62, pp. 265–272.CrossRefGoogle Scholar
  6. 6.
    Chen, D., Ai, S., Liang, Z., and Wei, F., Preparation and photocatalytic properties of zinc oxide nanoparticles by microwave-assisted ball milling, Ceram. Int., 2016, vol. 42, no. 2, pp. 3692–3696.CrossRefGoogle Scholar
  7. 7.
    Sychev, M.M., Minakova, T.S., Slizhov, Yu.G., and Shilova, O.A., Kislotno-osnovnye kharakteristiki poverkhnosti tverdykh tel i upravlenie svoistvami materialov i kompozitov (Acid-Base Characteristics of Solid Surfaces and Control of Material and Composite Properties), St. Petersburg: Khimizdat, 2016.Google Scholar
  8. 8.
    Sychov, M.M., Mjakin, S.V., Nakanishi, Y., Korsakov, V.G., Vasiljeva, I.V., Bakhmetjev, V.V., Solovjeva, O.V., and Komarov, E.V., Study of active surface centers in electroluminescent ZnS:Cu,Cl phosphors, Appl. Surf. Sci., 2005, vol. 244, nos. 1–4, pp. 461–464.CrossRefGoogle Scholar
  9. 9.
    Sychov, M.M., Zakharova, N.V., and Mjakin, S.V., Effect of milling on the surface functionality of BaTiO3-CaSnO3 ceramics, Ceram. Int., 2016, vol. 39, pp. 6821–6826.CrossRefGoogle Scholar
  10. 10.
    Ikonnikova, L.F., Minakova, T.S., and Nechiporenko, A.P., Application of the indicator method for studying the surface acidity of zinc sulphide, Zh. Prikl. Khim., 1990, no. 8, pp. 1709–1714.Google Scholar
  11. 11.
    Nechiporenko, A.P., Donorno-aktseptornye svoistva poverkhnosti tverdofaznykh sistem. Indikatornyi metod (Donor–Acceptor Properties of the Surface of Solid Phase Systems. Indicator Method), St. Petersburg: Lan’, 2017.Google Scholar
  12. 12.
    Komolov, A.S., Schaumburg, K., Moller, P.J., and Monakhov, V.V., Characterization of conducting molecular films on silicon: Auger electron spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and surface photovoltage, Appl. Surf. Sci., 1999, vol. 142, pp. 591–597.CrossRefGoogle Scholar
  13. 13.
    Komolov, A.S., Zhukov, Y.M., Lazneva, E.F., Aleshin, A.N., Pshenichnuk, S.A., Gerasimova, N.B., Panina, Yu.A., Zashikhin, G.D., and Baramygin, A.V., Thermally induced modification of the graphene oxide film on the tantalum surface, Mater. Des., 2017, vol. 113, pp. 319–325.CrossRefGoogle Scholar
  14. 14.
    Komolov, A.S., Lazneva, E.F., Gerasimova, N.B., Panina, Yu.A., Baramygin, A.V., Zashikhin, G.D., and Pshenichnyuk, S.A., Structure of vacant electronic states of an oxidized germanium surface upon deposition of perylene tetracarboxylic dianhydride films, Phys. Solid State, 2016, vol. 58, no. 2, pp. 377–381.CrossRefGoogle Scholar
  15. 15.
    Averin, I.A., Karmanov, A.A., Moshnikov, V.A., Pronin, I.A., Igoshina, S.E., Sigaev, A.P., and Terukov, E.I., Correlations in infrared spectra of nanostructures based on mixed oxides, Phys. Solid State, 2015, vol. 57, no. 12, pp. 2373–2381.CrossRefGoogle Scholar
  16. 16.
    Sychov, M.M., Zakharova, N.V., and Mjakin, S.V., Surface functional transformations in BaTiO3-CaSnO3 ceramics in the course of milling, Ceram. Int., 2013, vol. 39, pp. 6821–6826.CrossRefGoogle Scholar
  17. 17.
    Cheremisina, O.A., Sychev, M.M., Myakin, S.V., Korsakov, V.G., Popov, V.V., and Artsutanov, N.Yu., Dispersing effects on the donor-acceptor properties of the surface of ferroelectrics, Russ. J. Phys. Chem. A, 2002, vol. 76, no. 9, pp. 1472–1475.Google Scholar
  18. 18.
    Chen, Y.Y., Hsu, J.C., Lee, C.Y., and Wang, P.W., Influence of oxygen partial pressure on structural, electrical, and optical properties of al-doped ZnO film prepared by the ion beam co-sputtering method, J. Mater. Sci., 2013, vol. 48, no. 3, pp. 1225–1230.CrossRefGoogle Scholar
  19. 19.
    Zhang, P.F., Liu, X.L., Wei, H.Y., Fan, H.B., Liang, Z.M., Jin, P., and Wang, Z.G., Rapid thermal annealing properties of ZnO films grown using methanol as oxidant, J. Phys. D: Appl. Phys., 2007, vol. 40, no. 19, p. 6010.CrossRefGoogle Scholar
  20. 20.
    Meng, L.J., de Sa, C.P.M., and Dos Santos, M.P., Study of the structural properties of ZnO thin films by X-ray photoelectron spectroscopy, Appl. Surf. Sci., 1994, vol. 78, no. 1, pp. 57–61.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. A. Pronin
    • 1
    Email author
  • N. D. Yakushova
    • 1
  • M. M. Sychev
    • 2
    • 3
  • A. S. Komolov
    • 4
  • S. V. Myakin
    • 2
  • A. A. Karmanov
    • 1
  • I. A. Averin
    • 1
  • V. A. Moshnikov
    • 5
  1. 1.Penza State UniversityPenzaRussia
  2. 2.St. Petersburg State Technological Institute (Technical University)St. PetersburgRussia
  3. 3.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia
  4. 4.St. Petersburg State UniversitySt. PetersburgRussia
  5. 5.Ul’yanov (Lenin) St. Petersburg State Electrotechnical University LETISt. PetersburgRussia

Personalised recommendations