Glass Physics and Chemistry

, Volume 44, Issue 2, pp 62–70 | Cite as

Special Features of Oxide Layer Formation on Magnesium Alloys during Plasma Electrolytic Oxidation

Article

Abstract

The process of the oxidation of magnesium alloys in a silicate electrolyte during plasma electrolytic oxidation is investigated. An anomalous form of the chronogram of the formation voltage of the oxide layer in the electrolytes with the highest silicate concentration (approximately 0.15 M Na2SiO3 · 5H2O) is detected. X-ray diffraction analysis, scanning electron microscopy with energy dispersive X-ray spectroscopy analysis, and thickness gauges are used to characterize the surface microstructure, phase composition, and thickness, respectively. Mechanisms for the initial period of PEO and the “insular” growth were described. During the “insular” growth, islands consisting of vitrified components of the electrolyte are growing on the original smooth surface.

Keywords

plasma electrolytic oxidation surface treatment magnesium islands mechanism anomalous voltage form 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nene, S.S., Kashyap, B.P., Prabhu, N., Estrin, Y., and Al-Samman, T., Microstructure refinement and its effect on specific strength and bio-corrosion resistance in ultralight Mg–4Li–1Ca (LC41) alloy by hot rolling, J. Alloys Compd., 2014, vol. 615, pp. 501–506.CrossRefGoogle Scholar
  2. 2.
    Mordike, B.L., Stulikova, I., and Smola, B., Mechanisms of creep deformation in Mg–Sc–based alloys, Metall. Mater. Trans. A, 2005, vol. 36, no. 7, pp. 1729–1736.CrossRefGoogle Scholar
  3. 3.
    ASM Specialty Handbook: Magnesium and Magnesium Alloys, Avedesian, M. and Baker, H., Eds., Materials Park, OH: ASM Int., 1999.Google Scholar
  4. 4.
    Yerokhin, A., Nie, X., Leyland, A., Matthews, A., and Dowey, S., Plasma electrolysis for surface engineering, Surf. Coat. Technol., 1999, vol. 122, pp. 73–93.CrossRefGoogle Scholar
  5. 5.
    Cheng, Y., Cao, J., Mao, M., Peng, Z., Skeldon, P., and Thompson, G., High growth rate, wear resistant coatings on an Al–Cu–Li alloy by plasma electrolytic oxidation in concentrated aluminate electrolytes, Surf. Coat. Technol., 2015, vol. 269, pp. 74–82.CrossRefGoogle Scholar
  6. 6.
    Dehnavi, V., Luan, B.L., Shoesmith, D.W., Liu, X.Y., and Rohani, S., Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior, Surf. Coat. Technol., 2013, vol. 226, pp. 100–107.CrossRefGoogle Scholar
  7. 7.
    Borodianskiy, K., Zinigrad, M., and Gedanken, A., Aluminum A356 reinforcement by carbide nanoparticles, J. Nano Res., 2011, vol. 13, pp. 41–46.CrossRefGoogle Scholar
  8. 8.
    Dehnavi, V., Luan, B.L., Liu, X.Y., Shoesmith, D.W., and Rohani, S., Correlation between plasma electrolytic oxidation treatment stages and coating microstructure on aluminum under unipolar pulsed DC mode, Surf. Coat. Technol., 2015, vol. 269, pp. 91–99.CrossRefGoogle Scholar
  9. 9.
    Wang, L. and Nie, X., Silicon effects on formation of EPO oxide coatings on aluminum alloys, Thin Solid Films, 2006, vol. 494, pp. 211–218.CrossRefGoogle Scholar
  10. 10.
    Sobolev, A., Kossenko, A., Zinigrad, M., and Borodianskiy, K., An investigation of oxide coating synthesized on an aluminum alloy by plasma electrolytic oxidation in molten salt, Appl. Sci., 2017, vol. 7, no. 9, pp. 889–898.CrossRefGoogle Scholar
  11. 11.
    Lugovskoy, A., Zinigrad, M., Kossenko, A., and Kazanski, B., Production of ceramic layers on aluminum alloys by plasma electrolytic oxidation in alkaline silicate electrolytes, Appl. Surf. Sci., 2013, vol. 264, pp. 743–747.CrossRefGoogle Scholar
  12. 12.
    Gao, Y., Yerokhin, A., Parfenov, E., and Matthews, A., Application of voltage pulse transient analysis during plasma electrolytic oxidation for assessment of characteristics and corrosion behaviour of Ca- and P-containing coatings on magnesium, Electrochem. Acta, 2014, vol. 149, pp. 218–230.CrossRefGoogle Scholar
  13. 13.
    Něhemcováa, A., Skeldon, P., Thompson, G.E., and Pacal, B., Effect of fluoride on plasma electrolytic oxidation of AZ61 magnesium alloy, Surf. Coat. Technol., 2013, vol. 232, pp. 827–838.CrossRefGoogle Scholar
  14. 14.
    Einkhah, F., Lee, K.M., Ali Faghihi Sani, M., Yoo, B., and Shin, D.H., Structure and corrosion behavior of oxide layer with Zr compounds on AZ31 Mg alloy processed by two-step plasma electrolytic oxidation, Surf. Coat. Technol., 2014, vol. 238, pp. 75–79.CrossRefGoogle Scholar
  15. 15.
    Ma, Y., Nie, X., Northwood, D.O., and Hu, H., Systematic study of the electrolytic plasma oxidation process on a Mg alloy for corrosion protection, Thin Solid Films, 2006, vol. 494, pp. 296–301.CrossRefGoogle Scholar
  16. 16.
    Demirci, E.E., Arslan, E., Ezirmik, K.V., Baran, Ö., Totik, Y., and Efeoğlu, İ., Investigation of wear, corrosion and tribocorrosion properties of AZ91 Mg alloy coated by micro arc oxidation process in the different electrolyte solutions, Thin Solid Films, 2013, vol. 528, pp. 116-122.CrossRefGoogle Scholar
  17. 17.
    Kazanski, B., Kossenko, A., Zinigrad, M., and Lugovskoy, A., Fluoride ions as modifiers of the oxide layer produced by plasma electrolytic oxidation on AZ91D magnesium alloy, Appl. Surf. Sci., 2013, vol. 287, pp. 461–466.CrossRefGoogle Scholar
  18. 18.
    Wan, L., Li, J.F., Feng, J.Y., Sun, W., and Mao, Z.Q., Anatase TiO2 films with 2.2 eV band gap prepared by micro-arc oxidation, Mater. Sci. Eng. B., 2007, vol. 139, pp. 216–220.CrossRefGoogle Scholar
  19. 19.
    Zhongping Yao, Qiaoxiang Shen, Aoxiang Niu, Bing Hu, and Zhaohua Jiang, Preparation of high emissivity and low absorbance thermal control coatings on Ti alloys by plasma electrolytic oxidation, Surf. Coat. Technol., 2014, vol. 242, pp. 146–151.CrossRefGoogle Scholar
  20. 20.
    Zhongping Yao, Bing Hu, Qiaoxiang Shen, Aoxiang Niu, Zhaohua Jiang, Peibo Su, et al., Preparation of black high absorbance and high emissivity thermal control coating on Ti alloy by plasma electrolytic oxidation, Surf. Coat. Technol., 2014, vol. 253, pp. 166–170.CrossRefGoogle Scholar
  21. 21.
    Wenjun Zhu, Yu-Jing Fang, Huade Zheng, Guoxin Tan, Haimei Cheng, and Chengyun Ning, Effect of applied voltage on phase components of composite coatings prepared by micro-arc oxidation, Thin Solid Films, 2013, vol. 544, pp. 79–82.CrossRefGoogle Scholar
  22. 22.
    Kang, J.-I., Son, M.-K., Choe, H.-Ch., and Brantley, W.A., Bone-like apatite formation on manganesehydroxyapatite coating formed on Ti-6Al-4V alloy by plasma electrolytic oxidation, Thin Solid Films, 2016, vol. 620, pp. 126–131.CrossRefGoogle Scholar
  23. 23.
    Sandhyarani, M., Ashfaq, M., Arunnellaiappan, T., Selvan, M.P., Subramanian, S., and Rameshbabu, N., Effect of electrical parameters on morphology and invitro corrosion resistance of plasma electrolytic oxidized films formed on zirconium, Surf. Coat. Technol., 2015, vol. 269, pp. 286–294.CrossRefGoogle Scholar
  24. 24.
    Cengiz, S. and Gencer, Y., The characterization of the oxide based coating synthesized on pure zirconium by plasma electrolytic oxidation, Surf. Coat. Technol., 2014, vol. 242, pp. 132–140.CrossRefGoogle Scholar
  25. 25.
    Lu, Sh.-F., Lou, B.-Sh., Yang, Yu.-Ch., Wu, P.-Sh., Chung, R.-J., and Lee, J.-W., Effects of duty cycle and electrolyte concentration on the microstructure and biocompatibility of plasma electrolytic oxidation treatment on zirconium metal, Thin Solid Films, 2015, vol. 596, pp. 87–93CrossRefGoogle Scholar
  26. 26.
    Gnedenkov, S.V., Khrisanfova, O.A., Zavidnaya, A.G., Sinebryukhov, S.L., Egorkin, V.S., and Nistratova, M.V., et al., PEO coatings obtained on an Mg–Mn type alloy under unipolar and bipolar modes in silicate-containing electrolytes, Surf. Coat. Technol., 2010, vol. 204, pp. 2316–2322.CrossRefGoogle Scholar
  27. 27.
    Nominé, A., Martin, J., Henrion, G., and Belmonte, T., Effect of cathodic micro-discharges on oxide growth during plasma electrolytic oxidation (PEO), Surf. Coat. Technol., 2015, vol. 269, pp. 131–137.CrossRefGoogle Scholar
  28. 28.
    Rama Krishna, L., Poshal, G., and Sundararajan, G., Influence of electrolyte chemistry on morphology and corrosion resistance of micro arc oxidation coatings deposited on magnesium, Metall. Mater. Trans. A, 2010, vol. 41a, pp. 3499–3508.CrossRefGoogle Scholar
  29. 29.
    Shen, M., Wang, X., and Zhang, M., High-compactness coating grown by plasma electrolytic oxidation on AZ31 magnesium alloy in the solution of silicate–borax, Appl. Surf. Sci., 2012, vol. 259, pp. 362–366.CrossRefGoogle Scholar
  30. 30.
    Hwang, I., Hwang, D., Ko, Y., and Shin, D., Correlation between current frequency and electrochemical properties of Mg alloy coated by micro arc oxidation, Surf. Coat. Technol., 2012, vol. 206, pp. 3360–3365.CrossRefGoogle Scholar
  31. 31.
    Mohedano, M., Blawert, C., and Zheludkevich, M.L., Silicate-based plasma electrolytic oxidation (PEO) coatings with incorporated CeO2 particles on AM50 magnesium alloy, Mater. Des., 2015, vol. 86, pp. 735–744.CrossRefGoogle Scholar
  32. 32.
    Rama Krishna, L., Poshal, G., Jyothirmayi, A., and Sundararajan, G., Relative hardness and corrosion behavior of micro arc oxidation coatings deposited on binary and ternary magnesium alloys, Mater. Des., 2015, vol. 77, pp. 6–14.CrossRefGoogle Scholar
  33. 33.
    Stojadinović, S., Perić, M., Radić-Perić, J., Vasilić, R., Petković, M., and Zeković, Lj., Luminescence of the B1Σ+–X1Σ+ band system of MgO during plasma electrolytic oxidation of magnesium alloy, Surf. Coat. Technol., 2012, vol. 206, pp. 2905–2913.CrossRefGoogle Scholar
  34. 34.
    Wang, L., Chen, L., Yan, Z.-Ch., Wang, H., and Peng, J., Effect of potassium fluoride on structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31 magnesium alloy, Alloys Compd., 2009, vol. 480, pp. 469–474.CrossRefGoogle Scholar
  35. 35.
    Ko, Y.G., Lee, K.M., and Shin, D.H., Effect of ammonium metavanadate on surface characteristics of oxide layer formed on Mg alloy via plasma electrolytic oxidation, Surf. Coat. Technol., 2013, vol. 236, pp. 70–74.CrossRefGoogle Scholar
  36. 36.
    Boinet, M., Verdier, S., Maximovitch, S., and Dalard, F., Plasma electrolytic oxidation of AM60 magnesium alloy: Monitoring by acoustic emission technique. Electrochemical properties of coatings, Surf. Coat. Technol., 2005, vol. 199, pp. 141–149.CrossRefGoogle Scholar
  37. 37.
    Razavi, M., Fathi, M., Savabi, O., Vashaee, D., and Tayebi, L., In vitro analysis of electrophoretic deposited fluoridated hydroxyapatite coating on micro-arc oxidized AZ91 magnesium alloy for biomaterials applications, Metall. Mater. Trans. A, 2015, vol. 46, pp. 1394–1403.CrossRefGoogle Scholar
  38. 38.
    Kim, Y.S., Yang, H.W., Shin, K.R., Ko, Y.G., and Shin, D.H., Heat dissipation properties of oxide layers formed on 7075 Al alloy via plasma electrolytic oxidation, Surf. Coat. Technol., 2015, vol. 269, pp. 114–118.CrossRefGoogle Scholar
  39. 39.
    Arrabal, R., Mota, J.M., Criado, A., Pardo, A., Mohedano, M., and Matykina, E., Assessment of duplex coating combining plasma electrolytic oxidation and polymer layer on AZ31 magnesium alloy, Surf. Coat. Technol., 2012, vol. 206, pp. 4692–4703.CrossRefGoogle Scholar
  40. 40.
    Sinebryukhov, S.L., Sidorova, M.V., Egorkin, V.S., Nedozorov, P.M., Ustinov, A.Yu., Volkova, E.F., and Gnedenkov, S.V., Protective oxide coatings on Mg–Mn–Ce, Mg–Zn–Zr, Mg–Al–Zn–Mn, Mg–Zn–Zr–Y, and Mg–Zr–Nd magnesium based alloys, Prot. Met. Phys. Chem. Surf., 2012, vol. 48, pp. 678–687.CrossRefGoogle Scholar
  41. 41.
    Babaeia, M., Dehghanian, C., and Babaei, M., Electrochemical assessment of characteristics and corrosion behavior of Zr-containing coatings formed on titanium by plasma electrolytic oxidation, Surf. Coat. Technol., 2015, vol. 279, pp. 79–91.CrossRefGoogle Scholar
  42. 42.
    Cengiz, S., Uzunoglu, A., Stanciu, L., Tarakci, M., and Gencer, Y., Direct fabrication of crystalline hydroxyapatite coating on zirconium by single-step plasma electrolytic oxidation process, Surf. Coat. Technol., 2016, vol. 301, pp. 74–79.CrossRefGoogle Scholar
  43. 43.
    Chen Liu, Peng Liu, Zhiquan Huang, Qin Yan, Renge Guo, Dalong Li, et al., The correlation between the coating structure and the corrosion behavior of the plasma electrolytic oxidation coating on aluminum, Surf. Coat. Technol., 2016, vol. 286, pp. 223–230.CrossRefGoogle Scholar
  44. 44.
    Lukiyanchuk, I.V., Rudnev, V.S., and Tyrina, L.M., Plasma electrolytic oxide layers as promising systems for catalysis, Surf. Coat. Technol., 2016, vol. 307C, pp. 1183–1193.Google Scholar
  45. 45.
    Ming, Sun, Yerokhin, A., Matthews, A., Thomas, M., Laukart, A., von Hausen, M., and Klages, C.-P., Characterisation and electrochemical evaluation of plasma electrolytic oxidation coatings on magnesium with plasma enhanced chemical vapour deposition posttreatments plasma process, Polym., 2016, vol. 13, pp. 266–278.Google Scholar
  46. 46.
    Rakoch, A.G., Gladkova, A.A., Zayar, Linn., and Strekalina, D.M., The evidence of cathodic micro-discharges during plasma electrolytic oxidation of light metallic alloys and micro-discharge intensity depending on pH of the electrolyte, Surf. Coat. Technol., 2015, vol. 269, pp. 138–144.CrossRefGoogle Scholar
  47. 47.
    Lu Yu, Jinhui Cao, and Yingliang Cheng, An improvement of the wear and corrosion resistances of AZ31 magnesium alloy by plasma electrolytic oxidation in a silicate–hexametaphosphate electrolyte with the suspension of SiC nanoparticles, Surf. Coat. Technol., 2015, vol. 276, pp. 266–278.CrossRefGoogle Scholar
  48. 48.
    Gao, Y., Yerokhin, A., and Matthews, A., Deposition and evaluation of duplex hydroxyapatite and plasma electrolytic oxidation coatings on magnesium, Surf. Coat. Technol., 2015, vol. 269, pp. 170–182.CrossRefGoogle Scholar
  49. 49.
    Stojadinović, S., Vasilić, R., Radić-Perić, J., and Perić, M., Characterization of plasma electrolytic oxidation of magnesium alloy AZ31 in alkaline solution containing fluoride, Surf. Coat. Technol., 2015, vol. 273, pp. 1–11.CrossRefGoogle Scholar
  50. 50.
    Kossenko, A., Basic physical-chemical principles of plasma electrolytic oxidation process of aluminum and magnesium, PhD Thesis, Ariel: Ariel Univ., 2014.Google Scholar
  51. 51.
    Kossenko, A. and Zinigrad, M., A universal electrolyte for the plasma electrolytic oxidation of aluminum and magnesium alloys, Mater. Des., 2015, vol. 88, pp. 302–309.CrossRefGoogle Scholar
  52. 52.
    Ying-liang Cheng, Jin-hui Cao, Mo-ke Mao, Zhao-mei Peng, P. Skeldon, and G. E. Thompson, High growth rate, wear resistant coatings on an Al-Cu-Li alloy by plasma electrolytic oxidation in concentrated aluminate electrolytes, Surf. Coat. Technol., 2015, vol. 269, pp. 74–82.CrossRefGoogle Scholar
  53. 53.
    ASM Metals Handbook, Davis, J.R., Ed., Materials Park, OH: ASM Int., 1998.Google Scholar
  54. 54.
    Broun, B. and Aghion, E., A magnesium based alloy for high pressure die casting, US Patent no. 6139651, 2000.Google Scholar
  55. 55.
    Handbook of Chemistry and Physics, 94th ed., Haynes, W., Ed., Boca Raton, FL: CRC, 2013–2014.Google Scholar
  56. 56.
    PDF-2 2009, Database, Soorya Kabekkodu, Ed., Newtown Square, PA, USA: Int. Centre for Diffraction Data, 2009.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ariel University, Science ParkArielIsrael

Personalised recommendations