Glass Physics and Chemistry

, Volume 44, Issue 2, pp 108–114 | Cite as

Development of Approaches for Designing and Preparing Magnetic Nanocomposites Based on Zeolite Beta and Magnetite Nanoparticles under Hydrothermal Conditions

  • O. Yu. Golubeva
  • E. Yu. Brazovskaya
  • N. Yu. Ul’yanova
  • Yu. A. Morozova


Nanocomposites based on zeolite Beta and magnetite nanoparticles (MNs) are obtained under hydrothermal conditions. Nanoparticles synthesized under various conditions and having different surface properties are added at the preparatory stage of a zeolite Beta gel that is then subjected to hydrothermal treatment at 140°C for 48 h. It is found that modifying the surface of the nanoparticles by a cationic polymer, polydiallyldimethylammonium chloride (PDDAC) makes it possible to significantly increase the amount of magnetite introduced into the zeolite structure (up to 40 wt % compared to 2–10 wt % for unmodified particles) and obtain zeolites with a magnetic core that contain nanoparticles within the zeolite structure. It is shown that doping the initial gels with MNs allows obtaining magnetically sensitive zeolites with particles of 100 to 200 nm, which are 200 nm smaller than the zeolite particles obtained under the same conditions without doping.


zeolite Beta magnetite polydiallyldimethylammonium chloride hydrothermal synthesis nanocomposites targeted drug delivery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arruebo, M., Drug delivery from structured porous inorganic materials, WIREs Nanomed. Nanobiotechnol., 2012, vol. 4, no. 1, pp. 16–30.CrossRefGoogle Scholar
  2. 2.
    Ahuja, G. and Patak, K., Porous carriers for controlled/modulated drug delivery, Indian J. Pharm. Sci., 2009, vol. 71, no. 6, pp. 599–607.CrossRefGoogle Scholar
  3. 3.
    Sağir, T., Huysal, M., Durmus, Z., Kurt, B.Z., and Senel, M., Preparation and in vitro evaluation of 5-flourouracil loaded magnetite-zeolite nanocomposite (5-FU-MZNC) for cancer drug delivery, Biomed. Pharmacother., 2016, vol. 77, pp. 182–190.CrossRefGoogle Scholar
  4. 4.
    Cao, J., Liu, X.-W., Fu, R., and Tan, X.-Y., Magnetic P zeolites: Synthesis, characterization and behavior in potassium extraction from seawater, Sep. Purif. Technol., 2008, vol. 63, no. 1, pp. 92–100.CrossRefGoogle Scholar
  5. 5.
    Cao, J., Guihuan, C., Hongfei, G., and Jianxin, C., Synthesis and characterization of magnetic ZSM-5 zeolite, Trans. Tianjin. Univ., 2013, vol. 19, pp. 326–331.CrossRefGoogle Scholar
  6. 6.
    Belikov, V.G. and Kuregyan, A.G., Generation and medicobiological application of magnetic fields and carriers (review), Pharm.-Chem. J., 2001, vol. 35, no. 2, pp. 88–95.CrossRefGoogle Scholar
  7. 7.
    Brusnetsov, N.A., Baiburtskii, F.S., and Tarasov, V.V., Production technology and application of polyfunctional magnetically guided superparamagnetic preparations (a review), Pharm.-Chem. J., 2002, vol. 36, no. 4, pp. 197–205.CrossRefGoogle Scholar
  8. 8.
    Ismailova, K.G., Efremenko, V.I., and Kuregyan, A.G., Biotechnology of magnet-driven liposome preparations, Pharm.-Chem. J., 2005, vol. 39, no. 7, pp. 385–387.CrossRefGoogle Scholar
  9. 9.
    Galanov, A.I., Yurmazova, T.A., Savel’ev, G.G., Buldakov, M.A., Rudyk, Yu.V., Litvyakov, N.V., Nechaev, K.A., Tuzikov, S.V., Cherdyntseva, N.V., and Yavorovskii, N.A., Development of magnetic nanostructured iron-based materials as potential vectors for drug-delivery application, Sib. Onkol. Zh., 2008, vol. 27, no. 3, pp. 50–57.Google Scholar
  10. 10.
    Lima, T.M., Lima, C.G.S., Rathi, A.K., Gawande, M.B., Tucek, J., Urquieta-Gonzalea, E.A., Zbořil, R., Paixāo, M.W., and Varma, R.S., Magnetic ZSM-5 zeolite: a selective catalyst for the valorization of furfurylalcohol to γ-valerolactone, alkyl levulinates or levulinic acid, Green Chem., 2016, vol. 18, no. 20, pp. 5586–5593.CrossRefGoogle Scholar
  11. 11.
    Deng, B.Y., Deng, C., Qi, D., Liu, C., Liu, J., Zhang, X., and Zhao, D., Synthesis of core/shell colloidal magnetic zeolite microsphere for the immobilization of trypsin, Adv. Mater., 2009, vol. 21, no. 13, pp. 1377–1382.CrossRefGoogle Scholar
  12. 12.
    Pasti, L., Sarti, E., Cavazzini, A., Marchetti, N., Dondi, F., and Martucci, A., Factors affecting drug adsorption on beta zeolites, J. Sep. Sci., 2013, vol. 36, nos. 9–10, pp. 1604–1611.CrossRefGoogle Scholar
  13. 13.
    Golubeva, O.Yu. and Ul’yanova, N.Yu., Stabilization of silver nanoparticles and clusters in porous zeolite matrices with Rho, Beta, and Paulingite structures, Glass Phys. Chem., 2015, vol. 41, no. 5, pp. 537–544.CrossRefGoogle Scholar
  14. 14.
    Brazovskaya, E.Yu. and Golubeva, O.Yu., Study of the effect of isomorphic substitutions in the framework of zeolites with a beta structure on their porosity and sorption characteristics, Glass Phys. Chem., 2017, vol. 43, no. 4, pp. 357–362.CrossRefGoogle Scholar
  15. 15.
    Bárcia, P.S., Silva, J.A.C., and Rodrigues, A.E., Multicomponent sorption of hexane isomers in zeolite beta, AIChE J., 2007, vol. 53, no. 8, pp. 1970–1981.CrossRefGoogle Scholar
  16. 16.
    Kuwakara, Y., Miyazaki, T., Shirosaki, Y., and Kawashita, M., Effects of organic polymer addition in magnetite synthesis on the crystalline structure, RSC Adv., 2014, vol. 4, pp. 23359–23363.CrossRefGoogle Scholar
  17. 17.
    Guo, S., Li, D., Zhang, L., Jing, L., and Wang, E., Monodisperse mesoporous superparamagnetic singlecrystal magnetite nanoparticles for drug delivery, Biomaterials, 2009, vol. 30, no. 10, pp. 1881–1889.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. Yu. Golubeva
    • 1
  • E. Yu. Brazovskaya
    • 1
  • N. Yu. Ul’yanova
    • 1
  • Yu. A. Morozova
    • 1
  1. 1.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations