Glass Physics and Chemistry

, Volume 44, Issue 2, pp 123–129 | Cite as

Study of the Physical Properties of Metallic Glasses at Cryogenic Temperatures

  • L. I. Chubraeva
Materials of the International Conference “Glass: Science and Practice 2017”


The problems of using metallic glasses for fabricating magnetic cores of cryogenic and superconducting electrotechnical devices, operating at low temperatures of 77 K, are considered. The experience of creating a number of devices, including electric generators, motors and transformers with HTSC windings, is analyzed. The advantages and disadvantages of magnetic cores from annealed tapes are considered. The results of the study of losses and magnetic characteristics of domestic amorphous and nanocrystalline alloys before and after high-temperature annealing are presented.


metallic glasses soft magnetic materials amorphous alloys nanocrystalline alloys high-temperature superconductivity low temperatures electromechanical energy converters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbuzov, V.I., Voroshilova, M.V., Evteev, G.V., Nikitina, S.I., and Fedorov, Yu.K., Glass for high-peak power high-energy generators and radiation amplifiers, Glass Phys. Chem., 2015, vol. 41, no. 1, pp. 9–13.CrossRefGoogle Scholar
  2. 2.
    Pshenko, O.A., Drozdova, I.A., Polyakova, I.G., Rogacki, K., Ciz’man, A., Poprawski, R., Rysiakiewicz-Pasek, E., and Antropova, T.V., Ferromagnetic iron-containing porous glasses, Glass Phys. Chem., 2014, vol. 40, no. 2, pp. 167–172.CrossRefGoogle Scholar
  3. 3.
    Gludovat, B., Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism, Proc. Natl. Acad. Sci. USA, 2013, vol. 110, no. 46, pp. 18419–18424.CrossRefGoogle Scholar
  4. 4.
    Zolotukhin, I.V. and Kalinin, Yu.E., Amorphous metallic alloys, Sov. Phys. Usp., 1990, vol. 33, no. 9, pp. 720–738.CrossRefGoogle Scholar
  5. 5.
    Shalnikov, A., Superconducting Thin Films, Nature (London, UK), 1938, vol. 142, p. 74.CrossRefGoogle Scholar
  6. 6.
    Salli, I.V., Fizicheskie osnovy formirovaniya struktury splavov (Physical Principles of Alloy Structure Formation), Moscow: Metallurgiya, 1968.Google Scholar
  7. 7.
    Duwez, P., Continuous series of metastable solid solutions in silver-copper alloys, J. Appl. Phys., 1960, vol. 31, no. 6, p. 1136.CrossRefGoogle Scholar
  8. 8.
    Ryabov, A.V. and Okishev, K.Yu., Novye metallicheskie materialy i sposoby ikh proizvodstva (New Metallic Materials and their Production), Chelyabinsk: Yuzh.-Ural. Gos. Univ., 2007.Google Scholar
  9. 9.
    Amorphous alloys and their saving. Scholar
  10. 10.
    Gor’ev, A., A highly efficient amorphous metal engine is created. Scholar
  11. 11.
    Glezer, A.M. and Molotilov, B.V., Struktura i mekhanicheskie svoistva amorfnykh splavov (Structure and Mechanical Properties of Amorphous Alloys), Moscow: Metallurgiya, 1992.Google Scholar
  12. 12.
    Starodubtsev, Yu.N. and Belozerov, V.Ya., Magnetic cores from amorphous and nanocrystalline alloys, Electro, 2001, no. 3, pp. 11–16. Scholar
  13. 13.
    Kornienkov, B.A., Low-temperature magnetic properties of amorphous metal alloys, Steel Transl., 2012, vol. 42, no. 4, pp. 372–374. Scholar
  14. 14.
    Egorushkin, V.E. and Melnikova, N.V., Low-temperature anomalous properties of amorphous metals and alloys, J. Phys. F: Met. Phys., 1987, vol. 17, no. 6, pp. 1379–1389. Scholar
  15. 15.
    Ratushnyak, S.L. and Gonchukova, N.O., Relationship between onset of crystallization and relaxation of internal stresses in amorphous alloys, Glass Phys. Chem., 2014, vol. 40, no. 5, pp. 496–500.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of Electrophysics and Electric Power EngineeringRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations