Skip to main content
Log in

Synthesis and research of nanopowders composed of 0.97ZrO2 · 0.03La2O3

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

This work is devoted to the preparation of zirconium oxide nanopowders stabilized by lanthanum oxide using the method of codeposition in the presence of hydrogen peroxide. Nanopowders composed of 0.97ZrO2 · 0.03La2O3 with particles of 10–20 nm are obtained. It is found that in the temperature interval of 500–1100°C the tetragonal and monoclinic points of the zirconium oxide phase crystallize at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Degueldre, C., Zirconia inert matrix for plutonium utilization and minor actinides disposition in reactors, J. Alloys Compd., 2007, vols. 444–445, pp. 36–41.

    Article  Google Scholar 

  2. Vassen, R., Jarligo, M., Steinke, T., Mack, D., and Stoever, D., Overview on advanced thermal barrier coatings, Surf. Coat. Technol., 2010, vol. 205, pp. 938–942.

    Article  Google Scholar 

  3. Sayama, K. and Arakawa, H., Photocatalytic decomposition of water and hotocatalytic reduction of carbon dioxide over zirconia catalyst, J. Phys. Chem., 1993, vol. 97, no. 3, pp. 531–533.

    Article  Google Scholar 

  4. Gupta, T.K., Lange, F.E., and Bechtold, J.H., Mechanisms of toughening partially stabilized zirconia (PSZ), J. Am. Ceram. Soc., 1977, vol. 60, pp. 433–478.

    Google Scholar 

  5. Heuer, A.H., Transformation toughening in ZrO2-containing ceramics, J. Am. Ceram. Soc., 1987, vol. 70, pp. 689–698.

    Article  Google Scholar 

  6. Dubok, V.A., Kabanova, M.I., Nedil’ko, S.A., and Pavlenko, N.P., Effect of synthesis method on properties of powders partially stabilized zirconia dioxide, Poroshk. Metall., 1998, no. 8, pp. 56–60.

    Google Scholar 

  7. Porter, D.L., Mechanisms of toughening partially stabilized zirconia (PSZ), J. Am. Ceram. Soc., 2006, vol. 60, pp. 183–184.

    Article  Google Scholar 

  8. Silva, N.R.F.A., Sailer, I., Zhang, Yu., et al., Performance of zirconia for dental healthcare, Materials, 2010, vol. 3, no. 2, pp. 863–896.

    Article  Google Scholar 

  9. Morozova, L.V., Kalinina, M.V., Panova, T.I., Arsent’ev, M.Yu., Khamova, T.V., Drozdova, I.A., and Shilova, O.A., Synthesis and study of mesoporous xerogels and nanopowders of a metastable solid solution 97ZrO2–3Y2O3 for the fabrication of catalyst substrates, Glass Phys. Chem., 2016, vol. 42, no. 3, pp. 277–283.

    Article  Google Scholar 

  10. Khalil, K.A., Kim, S.W., and Kim, H.Y., Consolidation and mechanical properties of nanostructured hydroxyapatite-(ZrO2 + 3 mol % Y2O3) bioceramics by high-frequency induction heat sintering, Mater. Sci. Eng., 2007, vol. 456, no. 1, pp. 368–372.

    Article  Google Scholar 

  11. Tomaev, V.V., Tveryanovich, Yu.S., and Balmakov, M.D., Control of the phase composition of nanostructured silver iodide, Nanotechnol. Russ., 2015, vol. 10, nos. 3–4, pp. 242–246.

    Article  Google Scholar 

  12. Polikanova, A.S., Synthesis of nanosized oxydes of zirconium and yttrium by peroxo compounds pyrolysis, Cand. Sci. (Chem.) Dissertation, Moscow, 2007.

    Google Scholar 

  13. Piquemal, J.-Y., Briot, E., and Bregeault, J.-M., Preparation of materials in the presence of hydrogen peroxide: from discrete or “zero-dimensional” objects to bulk materials, Dalton Trans., 2013, vol. 42, pp. 29–45.

    Article  Google Scholar 

  14. Osipova, V.A., Zakharova, G.S., Andreikov, E.I., Yatluk, Yu.G., and Puzyrev, I.S., Sol-gel synthesis of titanum dioxide by hydrolysis of titanium glycerolates and peroxides, Glass Phys. Chem., 2013, vol. 39, no. 4, pp. 398–402.

    Article  Google Scholar 

  15. Kharlanov, A.N., Turakulova, A.O., Lunina, E.V., Murav’eva, G.P., and Lunin, V.V., Thermal transformations in ZrO2 doped by ittrium and lanthanum oxides, Vestn. Mosk. Univ., Ser. Khim., 1998, vol. 39, no. 3, pp. 162–165.

    Google Scholar 

  16. Yanga, Ch.-L., Hsianga, H.-I., and Chenb, Ch.-Ch., Characteristics of yttria stabilized tetragonal zirconia powder used in optical fiber connector ferrule, Ceram. Int., 2005, vol. 31, pp. 297–303.

    Article  Google Scholar 

  17. Chevalier, J. et al., The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends, J. Am. Ceram. Soc., 2009, vol. 92, no. 9, pp. 1901–1920.

    Article  Google Scholar 

  18. Kravchik, K.V., Gomza, Yu.P., Pashkova, O.V., Belous, A.G., and Nesin, S.D., Effect of zirconium and yttrium hydroxide precipitation conditions on the fractal structure of the resulting xerogels and 0.97ZrO2 · 0.03Y2O3 powders, Inorg. Mater., 2007, vol. 43, no. 3, pp. 258–263.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Zvereva.

Additional information

Original Russian Text © S.I. Niftaliev, I.V. Kuznetsova, M.V. Chislov, L.V. Lygina, I.A. Zvereva, 2017, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niftaliev, S.I., Kuznetsova, I.V., Chislov, M.V. et al. Synthesis and research of nanopowders composed of 0.97ZrO2 · 0.03La2O3 . Glass Phys Chem 43, 363–367 (2017). https://doi.org/10.1134/S1087659617040083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659617040083

Keywords

Navigation